Skip to main content
Log in

Atomic simulations of effects of contact size and interfacial interaction strength on superlubricity in incommensurate sliding interface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Understanding the effects of contact size and interfacial interaction strength on superlubricity in incommensurate sliding interface is critically needed for the design and development of nanoscale ultra-low friction devices. This study uses molecular dynamics simulations to explore the sliding friction behaviors of an incommensurate interface consisting of a diamond slider and a silver substrate. The instantaneous relative lattice constant is proposed to quantitatively describe the commensurability of contacting surfaces in the sliding process. It is found that when the contact size is large, the slider exhibits ultra-low friction force. While for small contact size, superlubricity behavior breaks down,which is due to the transition of incommensurate–commensurate interfacial configuration in the local contact region. It is also found that when the interfacial interaction strength is reduced below a critical value, the obvious stick–slip motion observed for the small slider with large interfacial interaction strength disappears and superlubricity behavior occurs, which results from the incommensurate interfacial configuration in the contact region maintained during the sliding process. These results provide a first demonstration that the instantaneous incommensurate–commensurate transition in the local contact region can result in the breakdown of superlubricity in a realistic three-dimensional sliding system. The obtained results not only may guide the design of nanoscale ultra-low friction devices, but also provide some insights into the origins of friction at macroscopic interfaces which usually consists of many small nanoscale contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Hirano, K. Shinjo, Phys. Rev. B 47, 11837 (1990)

    Article  ADS  Google Scholar 

  2. K. Shinjo, M. Hirano, Surf. Sci. 283, 473 (1993)

    Article  ADS  Google Scholar 

  3. M. Hirano, K. Shinjo, Wear 168, 121 (1993)

    Article  Google Scholar 

  4. A. Erdemir, J.-M. Martin, Superlubricity (Elsevier Science, New York, 2007)

    Google Scholar 

  5. E. Gnecco, S. Maier, E. Meyer, J. Phys. Condens. Matter 20, 354004 (2008)

    Article  Google Scholar 

  6. M. Urbakh, E. Meyer, Nat. Mater. 9, 8 (2010)

    Article  ADS  Google Scholar 

  7. C.G. Lee, Q. Li, W. Kalb, X.-Z. Liu, H. Berger, R.W. Carpick, J. Hone, Science 328, 76 (2010)

    Article  ADS  Google Scholar 

  8. B. Bhushan, J.N. Israelachvili, U. Landman, Nature (London) 374, 607 (1995)

    Article  ADS  Google Scholar 

  9. M. Dienwiebel, G.S. Verhoeven, N. Pradeep, J.W.M. Frenken, J.A. Heimberg, H.W. Zandbergen, Phys. Rev. Lett. 92, 126101 (2004)

    Article  ADS  Google Scholar 

  10. M. Hirano, K. Shinjo, R. Kaneko, Y. Murata, Phys. Rev. Lett. 78, 1448 (1997)

    Article  ADS  Google Scholar 

  11. D. Dietzel, C. Ritter, T. Mönninghoff, H. Fuchs, A. Schirmeisen, U.D. Schwarz, Phys. Rev. Lett. 101, 125505 (2008)

    Article  ADS  Google Scholar 

  12. M. Dienwiebel, N. Pradeep, G.S. Verhoeven, H.W. Zandbergen, J.W. Frenken, Surf. Sci. 576, 197 (2005)

    Article  ADS  Google Scholar 

  13. J. Brndiar, R. Turansky´, D. Dietzel, A. Schirmeisen, I. Stich, Nanotechnology 22, 085704 (2011)

    Article  ADS  Google Scholar 

  14. Z. Liu, J. Yang, F. Grey, J.Z. Liu, Y. Liu, Y. Wang, Y. Yang, Y. Cheng, Q.S. Zheng, Phys. Rev. Lett. 108, 205503 (2012)

    Article  ADS  Google Scholar 

  15. R.F. Zhang, Z.Y. Ning, Y.Y. Zhang, Q.S. Zheng, Q. Chen, H.H. Xie, Q. Zhang, W.F. Qian, F. Wei, Nat. Nanotech. 8, 912 (2013)

    Article  ADS  Google Scholar 

  16. G. He, M.H. Muser, M.O. Robbins, Science 284, 1650 (1999)

    Article  ADS  Google Scholar 

  17. A.E. Filippov, M. Dienwiebel, J.W.M. Frenken, J. Klafter, M. Urbakh, Phys. Rev. Lett. 100, 046102 (2008)

    Article  ADS  Google Scholar 

  18. X.F. Feng, S. Kwon, J.Y. Park, M. Salmeron, ACS Nano 7, 1718 (2013)

    Article  Google Scholar 

  19. W.K. Kim, M.L. Falk, Phys. Rev. B 80, 235428 (2009)

    Article  ADS  Google Scholar 

  20. S.M. Foiles, M.I. Baskes, M.S. Daw, Phys. Rev. B 33, 7983 (1986)

    Article  ADS  Google Scholar 

  21. M. Doyama, Y. Kogure, Comput. Mater. Sci. 14, 80 (1999)

    Article  Google Scholar 

  22. D.W. Brenner, J. Phys-Condens. Mater. 14, 783 (2002)

    Article  ADS  Google Scholar 

  23. L.A. Girifalco, V.G. Weizer, Phys. Rev. 114, 687 (1959)

    Article  ADS  Google Scholar 

  24. P.Z. Zhu, Y.Z. Hu, H. Wang, Chin. Sci. Bull. 54, 4555 (2009)

    Article  Google Scholar 

  25. U. Landman, W.D. Luedtke, W.D. Ribarsky MW, J. Vac. Sci. Technol. A 7, 2829 (1989)

    Article  ADS  Google Scholar 

  26. Q. Zhang, Y. Qi, L.G. Hector, T. Çağın, W.A. Goddard III, Phys. Rev. B 72, 045406 (2005)

    Article  ADS  Google Scholar 

  27. P. Liu, Y.W. Zhang, Carbon 49, 3687 (2011)

    Article  Google Scholar 

  28. X.Y. Sun, R.N. Wu, R. Xia, X.H. Chu, Y.J. Xu, Appl. Phys. Lett. 104, 183109 (2014)

    Article  ADS  Google Scholar 

  29. M. Reguzzoni, M.C. Righi, Phys. Rev. B 85, 201412(R) (2012)

    Article  ADS  Google Scholar 

  30. A.S. de Wijn, Phys. Rev. B 86, 085429 (2012)

    Article  ADS  Google Scholar 

  31. D. Dietzel, M. Feldmann, H. Fuchs, U.D. Schwarz, A. Schirmeisen, Phys. Rev. Lett. 111, 235502 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51405337 and 51105028) and Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130032120065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-Zhe Zhu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, PZ., Hu, YZ., Ma, TB. et al. Atomic simulations of effects of contact size and interfacial interaction strength on superlubricity in incommensurate sliding interface. Appl. Phys. A 118, 301–306 (2015). https://doi.org/10.1007/s00339-014-8731-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8731-6

Keywords

Navigation