Skip to main content

Graphene-based electrically reconfigurable deep-subwavelength metamaterials for active control of THz light propagation

Abstract

This work studies the terahertz light propagation through graphene-based reconfigurable metasurfaces where the unit cell dimensions are much smaller than the terahertz wavelength. The proposed devices, which poses deep-subwavelength unit cell and active region dimensions can operate as amplitude and/or phase modulators in certain specific frequency bands determined by the device geometry. Reconfigurability is attained via electrostatically tuning the optical conductivity of patterned graphene layers, which are strategically located in each unit cell. The ultra-small unit cell dimensions can be advantageous for beam shaping applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Y. Monnai, C. Jansen, H. Hillmer, M. Koch, H. Shinod, Terahertz beam steering and variable focusing using programmable diffraction gratings. Opt. Express 21(2), 2347–2354 (2013)

    Article  ADS  Google Scholar 

  2. S. Busch, B. Scherger, M. Scheller, M. Koch, Optically controlled terahertz beam steering and imaging. Opt. Lett. 37(8), 1391–1393 (2012)

    Article  ADS  Google Scholar 

  3. H. Fuser, M. Bieler, Terahertz beam steering by optical coherent control. Appl. Phys. Lett. 102, 251109 (2013)

    Article  ADS  Google Scholar 

  4. B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J.A. Deibel, M. Koch, Discrete terahertz beam steering with an electrically controlled liquid crystal device. J. Infrared Milli. Terahz. Waves 33(11), 1117–1122 (2012)

    Article  Google Scholar 

  5. H.T. Chen, W.J. Padilla, M.J. Cich, A.K. Azad, R.D. Averitt, A.J. Taylor, A metamaterial solid-state terahertz phase modulator. Nat. Photonics 3(3), 141–151 (2009)

    Article  ADS  Google Scholar 

  6. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tatienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011)

    Article  ADS  Google Scholar 

  7. B. Sensale-Rodriguez, R. Yan, L. Liu, D. Jena, H.G. Xing, Graphene for reconfigurable terahertz optoelectronics. Proc. IEEE 101(7), 1705–1706 (2013)

    Article  Google Scholar 

  8. J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H.A. Bechtel, M. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 83, 165113 (2011)

    Article  ADS  Google Scholar 

  9. B. Sensale-Rodriguez et al., Unique prospects for graphene-based terahertz modulators. Appl. Phys. Lett. 99, 113104 (2011)

    Article  ADS  Google Scholar 

  10. B. Sensale-Rodriguez, R. Yan, M.M. Kelly, T. Fang, K. Tahy, W.S. Hwang, D. Jena, L. Liu, H.G. Xing, Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 3, 780 (2012)

    Article  ADS  Google Scholar 

  11. L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J.M. Tour, J. Kono, Terahertz and infrared spectroscopy of gated large-area graphene. Nano Lett. 12, 3711 (2012)

    Article  ADS  Google Scholar 

  12. S.H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H.K. Choi, S.S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater. 11, 936–941 (2012)

    Article  ADS  Google Scholar 

  13. S.H. Lee, J. Choi, H.D. Kim, H. Choi, B. Min, Ultrafast refractive index control of a terahertz graphene metamaterial. Sci. Rep. 3, 2135 (2013)

    ADS  Google Scholar 

  14. W. Gao, J. Shu, K. Reichel, D.V. Nickel, X. He, G. Shi, R. Vajtai, P.M. Ajayan, J. Kono, D.M. Mittleman, Q. Xu, High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. Nano Lett. 14(3), 1242–1248 (2014)

    Article  ADS  Google Scholar 

  15. R. Yan, B. Sensale-Rodriguez, L. Liu, D. Jena, H.G. Xing, A new class of tunable metamaterial terahertz modulators. Opt. Express 20(27), 28664–28671 (2012)

    Article  ADS  Google Scholar 

  16. S.J. Koester, M. Li, High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett. 100, 171107 (2012)

    Article  ADS  Google Scholar 

  17. M. Liu, X. Yin, X. Zhang, Double-layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012)

    Article  ADS  Google Scholar 

  18. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011)

    Article  ADS  Google Scholar 

  19. M. Kafesaki, N.H. Shen, S. Tzortzakis, C.M. Soukoulis, Optically switchable and tunable terahertz metamaterials through photoconductivity. J. Opt. 14, 114008 (2012)

    Article  ADS  Google Scholar 

  20. B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M.M. Kelly, D. Jena, L. Liu, H.G. Xing, Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators. Nano Lett. 12, 4518–4522 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the NSF MRSEC program at the University of Utah under grant # DMR 1121252 and from the NSF CAREER award #1351389 (monitored by Dimitris Pavlidis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berardi Sensale-Rodriguez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arezoomandan, S., Yang, K. & Sensale-Rodriguez, B. Graphene-based electrically reconfigurable deep-subwavelength metamaterials for active control of THz light propagation. Appl. Phys. A 117, 423–426 (2014). https://doi.org/10.1007/s00339-014-8693-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8693-8

Keywords

  • Graphene Layer
  • Optical Conductivity
  • Unit Cell Dimension
  • Transmission Amplitude
  • Graphene Conductivity