Applied Physics A

, Volume 117, Issue 2, pp 423–426 | Cite as

Graphene-based electrically reconfigurable deep-subwavelength metamaterials for active control of THz light propagation

  • Sara Arezoomandan
  • Kai Yang
  • Berardi Sensale-Rodriguez


This work studies the terahertz light propagation through graphene-based reconfigurable metasurfaces where the unit cell dimensions are much smaller than the terahertz wavelength. The proposed devices, which poses deep-subwavelength unit cell and active region dimensions can operate as amplitude and/or phase modulators in certain specific frequency bands determined by the device geometry. Reconfigurability is attained via electrostatically tuning the optical conductivity of patterned graphene layers, which are strategically located in each unit cell. The ultra-small unit cell dimensions can be advantageous for beam shaping applications.


Graphene Layer Optical Conductivity Unit Cell Dimension Transmission Amplitude Graphene Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the support from the NSF MRSEC program at the University of Utah under grant # DMR 1121252 and from the NSF CAREER award #1351389 (monitored by Dimitris Pavlidis).


  1. 1.
    Y. Monnai, C. Jansen, H. Hillmer, M. Koch, H. Shinod, Terahertz beam steering and variable focusing using programmable diffraction gratings. Opt. Express 21(2), 2347–2354 (2013)CrossRefADSGoogle Scholar
  2. 2.
    S. Busch, B. Scherger, M. Scheller, M. Koch, Optically controlled terahertz beam steering and imaging. Opt. Lett. 37(8), 1391–1393 (2012)CrossRefADSGoogle Scholar
  3. 3.
    H. Fuser, M. Bieler, Terahertz beam steering by optical coherent control. Appl. Phys. Lett. 102, 251109 (2013)CrossRefADSGoogle Scholar
  4. 4.
    B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J.A. Deibel, M. Koch, Discrete terahertz beam steering with an electrically controlled liquid crystal device. J. Infrared Milli. Terahz. Waves 33(11), 1117–1122 (2012)CrossRefGoogle Scholar
  5. 5.
    H.T. Chen, W.J. Padilla, M.J. Cich, A.K. Azad, R.D. Averitt, A.J. Taylor, A metamaterial solid-state terahertz phase modulator. Nat. Photonics 3(3), 141–151 (2009)CrossRefADSGoogle Scholar
  6. 6.
    N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tatienne, F. Capasso, Z. Gaburro, Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011)CrossRefADSGoogle Scholar
  7. 7.
    B. Sensale-Rodriguez, R. Yan, L. Liu, D. Jena, H.G. Xing, Graphene for reconfigurable terahertz optoelectronics. Proc. IEEE 101(7), 1705–1706 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H.A. Bechtel, M. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Drude conductivity of Dirac fermions in graphene. Phys. Rev. B 83, 165113 (2011)CrossRefADSGoogle Scholar
  9. 9.
    B. Sensale-Rodriguez et al., Unique prospects for graphene-based terahertz modulators. Appl. Phys. Lett. 99, 113104 (2011)CrossRefADSGoogle Scholar
  10. 10.
    B. Sensale-Rodriguez, R. Yan, M.M. Kelly, T. Fang, K. Tahy, W.S. Hwang, D. Jena, L. Liu, H.G. Xing, Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 3, 780 (2012)CrossRefADSGoogle Scholar
  11. 11.
    L. Ren, Q. Zhang, J. Yao, Z. Sun, R. Kaneko, Z. Yan, S. Nanot, Z. Jin, I. Kawayama, M. Tonouchi, J.M. Tour, J. Kono, Terahertz and infrared spectroscopy of gated large-area graphene. Nano Lett. 12, 3711 (2012)CrossRefADSGoogle Scholar
  12. 12.
    S.H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H.K. Choi, S.S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, Switching terahertz waves with gate-controlled active graphene metamaterials. Nat. Mater. 11, 936–941 (2012)CrossRefADSGoogle Scholar
  13. 13.
    S.H. Lee, J. Choi, H.D. Kim, H. Choi, B. Min, Ultrafast refractive index control of a terahertz graphene metamaterial. Sci. Rep. 3, 2135 (2013)ADSGoogle Scholar
  14. 14.
    W. Gao, J. Shu, K. Reichel, D.V. Nickel, X. He, G. Shi, R. Vajtai, P.M. Ajayan, J. Kono, D.M. Mittleman, Q. Xu, High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures. Nano Lett. 14(3), 1242–1248 (2014)CrossRefADSGoogle Scholar
  15. 15.
    R. Yan, B. Sensale-Rodriguez, L. Liu, D. Jena, H.G. Xing, A new class of tunable metamaterial terahertz modulators. Opt. Express 20(27), 28664–28671 (2012)CrossRefADSGoogle Scholar
  16. 16.
    S.J. Koester, M. Li, High-speed waveguide-coupled graphene-on-graphene optical modulators. Appl. Phys. Lett. 100, 171107 (2012)CrossRefADSGoogle Scholar
  17. 17.
    M. Liu, X. Yin, X. Zhang, Double-layer graphene optical modulator. Nano Lett. 12, 1482–1485 (2012)CrossRefADSGoogle Scholar
  18. 18.
    L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011)CrossRefADSGoogle Scholar
  19. 19.
    M. Kafesaki, N.H. Shen, S. Tzortzakis, C.M. Soukoulis, Optically switchable and tunable terahertz metamaterials through photoconductivity. J. Opt. 14, 114008 (2012)CrossRefADSGoogle Scholar
  20. 20.
    B. Sensale-Rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li, X. Liang, D. Gundlach, V. Protasenko, M.M. Kelly, D. Jena, L. Liu, H.G. Xing, Extraordinary control of terahertz beam reflectance in graphene electro-absorption modulators. Nano Lett. 12, 4518–4522 (2012)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sara Arezoomandan
    • 1
  • Kai Yang
    • 1
  • Berardi Sensale-Rodriguez
    • 1
  1. 1.Department of Electrical and Computer EngineeringThe University of UtahSalt Lake CityUSA

Personalised recommendations