Skip to main content
Log in

Influence of Li+ and Dy3+ on structural and thermoluminescence studies of sodium sulfate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Na2SO4, Na2SO4: Dy3+, LiNaSO4 and LiNaSO4: Dy3+ nanoparticles successfully synthesized by slow evaporation technique followed by calcination at 400 oC. The resultant products were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared and UV–Vis spectroscopy. The average crystallite size was calculated using Debye–Scherrer’s formula and Williamson–Hall’s (W–H) plots. The optical energy band gap (E g) was estimated from Wood and Tauc’s relation, which varies from 3.70 to 4.45 eV. The variation in band gap values attributed to large degree of structural defects. Thermoluminescence studies were investigated using γ-irradiation in the dose range 0.5–5 kGy at a heating rate of 5 K s−1. The samples Na2SO4 and LiNaSO4 showed a well-resolved glow peak at ~180 and ~170 °C, respectively. The prominent glow peak at ~175 °C along with shouldered peak at ~60 °C was observed for Na2SO4: Dy3+. LiNaSO4: Dy3+ showed prominent glow peak at ~100 °C and a small shoulder peak at ~180 °C. The addition of isovalent (Li+) quenches the TL intensity, whereas the hypervalent (Dy3+) increases the intensity of Na2SO4. The variations of TL intensity for all the phosphors follow linear behavior up to 5 kGy and were useful in radiation dosimetry. The kinetic parameters (E, b and s) were estimated from the glow peak shape method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.F. Wu, W.P. Qin, G.S. Qin, D. Zhao, J.S. Zhang, S.H. Huang, S.Z. Lv, H.Q. Liu, H.Y. Lin, Appl. Phys. Lett. 82, 520 (2003)

    Article  ADS  Google Scholar 

  2. J. Dexpert Ghys, R. Mauricot, M.D. Faucher, J. Lumin. 69, 203 (1996)

  3. B. Bihari, H. Eilers, B.M. Tissue, J. Lumin. 75, 1 (1997)

    Article  Google Scholar 

  4. B. Li, Z.N. Gu, J.H. Lin, M.C. Su, Chem. J. Chin. Univ. 22, 1 (2001)

    Article  ADS  MATH  Google Scholar 

  5. Z.H. Jia, H. Li, Z.R. Ye, Chem. J. Chin. Univ. 23, 352 (2002)

    Google Scholar 

  6. S.P. Lochab, P.D. Sahare, R.S. Chauhan, N. Salah, A. Pandey, J. Phys. D Appl. Phys. 39, 1786 (2006)

    Article  ADS  Google Scholar 

  7. E. Wiedemann, G.C. Schmidt, Ann. Phys. Chem. 54, 600 (1895)

    Google Scholar 

  8. T. Yamashita, N. Nada, H. Onishi, S. Kitamura, in Proceedings of the 2nd International Conference on Luminescence Dosimetry, Gatlinberg, USA, 1968

  9. T. Yamashita, N. Nada, H. Onishi, S. Kitamura, Health Phys. 21, 295 (1971)

    Article  Google Scholar 

  10. Yamashita T, in Proceedings of the 4th International Conference on Luminescence Dosimetry, Krakow, Poland, 1974, p. 467

  11. J.P. Elder, Thermochim. Acta 36, 67 (1980)

    Article  Google Scholar 

  12. H.G. Wiedemann, Thermochim. Acta 50, 17 (1981)

    Article  Google Scholar 

  13. S. Gomathy, P. Gopalan, A.R. Kulakarni, J. Sol. Stat. Chem. 146, 6 (1999)

    Article  ADS  Google Scholar 

  14. F.C. Kracek, R.E. Gibson, J. Phys. Chem. 34, 188 (1930)

    Article  Google Scholar 

  15. B.K. Choi, H.K. Lee, Y.W. Kee, Sol. Stat. Ionics 113–115, 493 (1998)

    Article  ADS  Google Scholar 

  16. C.R. Navarro, E. Doehne, E. Sebastian, Cem. Concr. Res. 30, 1527 (2000)

    Article  Google Scholar 

  17. P.D. Sahare, S.V. Moharil, Radiat. Eff. Def. Solids 114, 167 (1990)

    Article  Google Scholar 

  18. P.D. Sahare, S.V. Moharil, Radiat. Eff. Def. Solids. 116, 275 (1991)

    Article  Google Scholar 

  19. P.D. Sahare, S.V. Moharil, J. Lumin. 43, 369 (1989)

    Article  Google Scholar 

  20. P.D. Sahare, S.V. Moharil, B.D. Bhasin, J. Phys. D Appl. Phys. 22, 971 (1989)

    Article  ADS  Google Scholar 

  21. A.Z.M.S. Rahman, X. Cao, L. Wei, B. Wang, R. Yu, Z. Chen, G. An, A. Sidike, Appl. Phys. A 111, 587 (2013)

  22. A. Sidike, A.Z.M.S. Rahman, J.Y. He, K. Atobe, N. Yamashita, J. Lumin. 129, 1271 (2009)

    Article  Google Scholar 

  23. A. Sidike, A.Z.M.S. Rahman, J.Y. He, L.X. Gong, K. Atobe, N. Yamashita, J. Lumin. 131, 1840 (2011)

    Article  Google Scholar 

  24. V. Correcher, J.G. Guinea, P.L. Arce, J.M.G. Ros, Spectrochim. Acta A. 60(7), 1431 (2004)

    Article  ADS  Google Scholar 

  25. A. Pandey, P.D. Sahare, Phys. Status Solids (a) 199, 533 (2003)

    Article  ADS  Google Scholar 

  26. A. Pandey, P.D. Sahare, J.S. Bakare, S.P. Lochab, F. Singh, D. Kanjilal, J. Phys. D 36, 633 (2003)

    Article  Google Scholar 

  27. R. Murugan, A. Ghule, H. Chang, J. Phys. Condens. Matter. 12, 677 (2000)

    Article  ADS  Google Scholar 

  28. P. Parhi, V. Munivannan, Mater. Lett. 62, 3468 (2008)

    Article  Google Scholar 

  29. M. Morgano, I.P. Wurfl, S. Binetti, Sci. Adv. Mater. 3, 388 (2011)

    Article  Google Scholar 

  30. Y.R. Jung, H.K. Yang, B.K. Moon, B.C. Choi, J.H. Jeong, H. Choi, J.H. Kim, K.H. Kim, J. Nanosci. Nanotechnol. 11, 871 (2011)

    Article  Google Scholar 

  31. C. Manjunatha, D.V. Sunitha, H. Nagabhushana, B.M. Nagabhushana, S.C. Sharma, R.P.S. Chakradhar, Spectrochim. Acta Part A 93, 140 (2012)

    Article  ADS  Google Scholar 

  32. A. Periasamy, S. Murugananda, M. Palaniswamy, J. Chem. 2, 981 (2009)

    Google Scholar 

  33. B.K. Choi, D.J. Lockwood, J. Phys. Condens. Matter. 17, 6095 (2005)

    Article  ADS  Google Scholar 

  34. C.R. Navarro, E. Doehne, E. Sebastian, Cem. Concr. Res. 30, 1527 (2000)

    Article  Google Scholar 

  35. P. Klug, L.E. Alexander, X-ray Diffraction Procedure (Wiley, New York, 1954)

    Google Scholar 

  36. S.B. Qadri, J.P. Yang, E.F. Skelton, B.R. Ratan, Appl. Phys. Lett. 70, 1020 (1997)

    Article  ADS  Google Scholar 

  37. P. Parhi, V. Munivannan, Mater. Lett. 62, 3468 (2008)

    Article  Google Scholar 

  38. A. Periasamy, S. Murugananda, M. Palaniswamy, J. Chem. 2, 981 (2009)

    Google Scholar 

  39. L.K. Pan, Q. Sun Chang, C.M. Li, J. Phys. Chem. B 108, 3404 (2004)

    Article  Google Scholar 

  40. H.Q. Cao, X.Q. Qiu, B. Luo, Y. Liang, Y.H. Zhang, R.Q. Tan, M.J. Zhao, Q.M. Zhu, Adv. Funct. Mater. 14, 243 (2004)

    Article  Google Scholar 

  41. A. Emeline, G.V. Kataeva, A.S. Litke, A.V. Rudakova, V.K. Ryabchuk, N. Serpone, Langmuir 14, 5011 (1998)

    Article  Google Scholar 

  42. J. Tauc, in Optical Properties of Solids, ed. by F. Abeles (North Holland, Amsterdam, 1970)

  43. N. Dhananjaya, H. Nagabhushana, B.M. Nagabhushana, B. Rudraswamy, D.V. Sunitha, C. Shivakumara, R.P.S. Chakradhar, J. Spectrochim. Acta A. 96, 532 (2012)

    Article  ADS  Google Scholar 

  44. C. Furetta, Handbook of Thermoluminescence (World Scientific, Singapore, 2003)

    Book  Google Scholar 

  45. S.P. Lochab, P.D. Sahare, R.S. Chauhan, N. Salah, A. Pandey, J. Phys. D Appl. Phys. 39, 589 (2009)

    Google Scholar 

  46. R. Chen, S.W.S. Mckeever, Theory of Thermoluminescence and Related Phenomenon (World Scientific Press, Singapore, 1997)

    Book  Google Scholar 

  47. S.P. Lochab, P.D. Sahare, R.S. Chauhan, N. Salah, A. Pandey, J. Phys. D Appl. Phys. 39, 1786 (2006)

    Article  ADS  Google Scholar 

  48. Y.S. Horowitz, M. Rosenkrantz, S. Mahajna, D. Yossian, J. Phys. D Appl. Phys. 29, 205 (1996)

    Article  ADS  Google Scholar 

  49. Y.S. Horowitz, O. Avila, M. Rodrigues-Villafurete, Nucl. Instrum. Methods B 184, 85 (2001)

  50. A.J.J. Boss, Nucl. Instrum. Methods B 184, 3 (2001)

    Article  ADS  Google Scholar 

  51. G. Kitis, C. Furetta, M. Prokic, V. Prokic, J. Phys. D Appl. Phys. 33, 1252 (2000)

    Article  ADS  Google Scholar 

  52. B. Arunakumar Sharma, A. Nabachandra Singh, S. Nabadwip Singh, O. Binoy Kumar Singh, Rad. Meas. 44, 32 (2009)

  53. G. Kitis, J. M. Gomez-Ros, Nucl. Instrum. Methods A 440, 224 (2000)

  54. R. Chen, Y. Kirish, Analysis of Thermally Stimulated Processes (Pergamon, NewYork, 1981)

    Google Scholar 

Download references

Acknowledgments

One of the authors, Y. S. Vidya is thankful to ‘ISRO-ISEC, advanced devices and radiation cell, Bangalore,’ for providing γ-irradiation facility. The author also wishes to thank Dr. S. C. Prashantha, H. O. D, Department of Physics, EWIT, Bangalore, and Department of Physics, Lal Bahadur Shastri Government First Grade College, R. T. Nagar, Bangalore, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Lakshminarasappa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 184 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidya, Y.S., Lakshminarasappa, B.N. Influence of Li+ and Dy3+ on structural and thermoluminescence studies of sodium sulfate. Appl. Phys. A 118, 249–260 (2015). https://doi.org/10.1007/s00339-014-8669-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8669-8

Keywords

Navigation