Skip to main content

Advertisement

Log in

High dielectric, dynamic mechanical and thermal properties of polyimide composite film filled with carbon-coated silver nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High dielectric permittivity materials are much desirable in the electric industry. Filling polymer matrix with conductive powders to form percolative composites is one of the most promising methods to achieve high dielectric permittivity. However, they do not always provide high mechanical properties and thermal stability, which seriously limit their applications. In this study, we present the preparation of functional core–shell structured silver nanowires/polyimide (AgNWs/PI) hybrid film with high dielectric permittivity and low loss dielectric. The core–shell structure of AgNWs was characterized by transmission electric microscopy. The dynamical mechanical analysis showed that AgNWs/PI hybrid films had relative high dynamic mechanical properties with storage modules over 1 Gpa. Moreover, the hybrid films exhibited excellent thermal stability with 5 % weight-loss temperature above 500 °C. The dielectric properties of the carbon-coated AgNWs hybrid films were remarkably improved. The maximum dielectric permittivity of hybrid films is 126 at 10Hz, which was 39 times higher than that of pure PI matrix, while the dielectric loss of that is still remained at a low value. This study showed a new method to improve the dielectric, dynamic mechanical and thermal properties of films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.-K. Yuan, Z.-M. Dang, S.-H. Yao, J.-W. Zha, T. Zhou, S.-T. Li et al., J. Mater. Chem. 20, 2441–2447 (2010)

    Article  Google Scholar 

  2. S. Zhang, C. Huang, R.J. Klein, F. Xia, Q. Zhang, Z.-Y. Cheng, J. Intel. Mater. Syst. Struct. 18, 133–145 (2007)

    Article  Google Scholar 

  3. B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang et al., Science 313, 334–336 (2006)

    Article  ADS  Google Scholar 

  4. D. Wang, T. Zhou, J.-W. Zha, J. Zhao, C.-Y. Shi, Z.-M. Dang, J. Mater. Chem. A 1, 6162–6168 (2013)

    Article  Google Scholar 

  5. P. Kim, N.M. Doss, J.P. Tillotson, P.J. Hotchkiss, M.-J. Pan, S.R. Marder et al., ACS Nano 3, 2581–2592 (2009)

    Article  Google Scholar 

  6. Z.-M. Dang, B. Peng, D. Xie, S.-H. Yao, M.-J. Jiang, J. Bai, Appl. Phys. Lett. 92, 112910 (2008)

    Article  ADS  Google Scholar 

  7. L. Qi, B.I. Lee, S. Chen, W.D. Samuels, G.J. Exarhos, Adv. Mater. 17, 1777–1781 (2005)

    Article  Google Scholar 

  8. Y. Shen, Y. Lin, M. Li, C.W. Nan, Adv. Mater. 19, 1418–1422 (2007)

    Article  Google Scholar 

  9. Y. Zhang, Y. Wang, Y. Deng, M. Li, J. Bai, ACS Appl. Mater. Interfaces 4, 65–68 (2012)

    Article  Google Scholar 

  10. Y. Zhang, P. Huo, J. Wang, X. Liu, C. Rong, G. Wang, J. Mater. Chem. C 1, 4035–4041 (2013)

    Article  Google Scholar 

  11. X. Sun, Y. Li, Angew. Chem. Int. Edit. 43, 597–601 (2004)

    Article  Google Scholar 

  12. H. Liang, D. Yu, Polym. Eng. Sci. 51, 1757–1762 (2011)

    Article  Google Scholar 

  13. Z. Qiang, G. Liang, A. Gu, L. Yuan, J. Nanopart. Res. 16, 2391 (2014)

    Article  Google Scholar 

  14. H.Y. Mi, Z. Li, L.S. Turng, Y.G. Sun, S.Q. Gong, Mater. Des. 56, 398–404 (2014)

    Article  Google Scholar 

  15. H. Liu, Y. Shen, Y. Song, C.W. Nan, Y. Lin, X. Yang, Adv. Mater. 23, 5104–5108 (2011)

    Article  Google Scholar 

  16. T. Lei, Q. Xue, L. Chu, Z. Han, J. Sun, F. Xia et al., Appl. Phys. Lett. 103, 012902 (2013)

    Article  ADS  Google Scholar 

  17. W. Xu, S.H. Yu, Small 5, 460–465 (2009)

    Article  Google Scholar 

  18. X. Sun, Y. Li, Adv. Mater. 17, 2626–2630 (2005)

    Article  Google Scholar 

  19. G. He, J. Zhou, K. Tan, H. Li, Compos. Sci. Technol. 71, 1914–1920 (2011)

    Article  Google Scholar 

  20. K.W. Jun, J.M. Lee, J.Y. Lee, I.K. Oh, J. Nanosci. Nanotechnol. 14, 7483–7487 (2014)

    Article  Google Scholar 

  21. S. Sorel, U. Khan, J.N. Coleman, Appl. Phys. Lett. 101, 103106 (2012)

  22. Z.M. Dang, T. Zhou, S.H. Yao, J.K. Yuan, J.W. Zha, H.T. Song et al., Adv. Mater. 21, 2077–2082 (2009)

    Article  Google Scholar 

  23. F. Fang, W. Yang, S. Yu, S. Luo, R. Sun, Appl. Phys. Lett. 104, 132909 (2014)

  24. S. Luo, S. Yu, R. Sun, C.-P. Wong, ACS Appl. Mater. Interfaces 6, 176–182 (2014)

    Article  Google Scholar 

  25. L. Wang, Z.M. Dang, Appl. Phys. Lett. 87, 042903 (2005)

    Article  ADS  Google Scholar 

  26. Z.-M. Dang, L. Wang, Y. Yin, Q. Zhang, Q.-Q. Lei, Adv. Mater. 19, 852–857 (2007)

    Article  Google Scholar 

  27. X. Kuang, Z. Liu, H. Zhu, J. Appl. Polym. Sci. 129, 3411–3416 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Teacher Research Foundation of Central South University under 2013JSJJ002.

Conflict of interest

The authors declare no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hengfeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Piao, X., Zou, H. et al. High dielectric, dynamic mechanical and thermal properties of polyimide composite film filled with carbon-coated silver nanowires. Appl. Phys. A 118, 243–248 (2015). https://doi.org/10.1007/s00339-014-8667-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8667-x

Keywords

Navigation