Skip to main content
Log in

Valence-band offset of n-Zn0.8Mg0.2O/p-Ni0.8Mg0.2O heterojunction with tunable bandgaps of both sides measured by X-ray photoelectron spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The valence-band offset (VBO) of n-Zn0.8Mg0.2O/p-Ni0.8Mg0.2O heterojunction grown by pulsed laser deposition was investigated by X-ray photoelectron spectroscopy. Core levels of Zn 2p and Ni 2p were used to align the VBO of n-Zn0.8Mg0.2O/p-Ni0.8Mg0.2O heterojunction. It was found that n-Zn0.8Mg0.2O/p-Ni0.8Mg0.2O heterojunction has a type-II band alignment and its VBO is determined to be 1.88 ± 0.05 eV, and conduction-band offset is deduced to be −1.91 ± 0.05 eV. Alloying with Mg can tune the positions of valence-band maximum (VBM), conduction-band minimum (CBM) and bandgaps of both Zn1−x Mg x O and Ni1−x Mg x O thin films, according to which we can design various heterojunction devices with desired CBM and VBM values of both sides by tuning appropriate Mg composition. Also, there is blue shift of absorption edges of the integral Zn0.8Mg0.2O/Ni0.8Mg0.2O heterojunction, which has a significant impact on the design and application of deep-ultraviolet optoelectronic devices, such as solar-blind UV detectors with high photoresponse performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Zhang, G.H. Liu, X.H. Gu, J.R. Zhou, W.B. Guo, L. Shen, S.P. Ruan, J. Nanosci. Nanotechnol. 14, 3827 (2014)

    Article  Google Scholar 

  2. M. Zhang, X.H. Gu, K.B. Lv, W. Dong, S.P. Ruan, Y. Chen, H.F. Zhang, Appl. Surf. Sci. 268, 312 (2013)

    Article  ADS  Google Scholar 

  3. P. Wang, Q.H. Zhen, Q. Tang, Y.T. Yang, L.X. Guo, K. Ding, F. Huang, Opt. Express 21, 18387 (2013)

    Article  ADS  Google Scholar 

  4. S. Yoshida, S. Misawa, S. Gonda, J. Appl. Phys. 53, 6844 (1982)

    Article  ADS  Google Scholar 

  5. K. Ito, K. Hiramatsu, H. Amano, I. Akasaki, J. Cryst. Growth 104, 533 (1990)

    Article  ADS  Google Scholar 

  6. G.M. Li, J.W. Zhang, Y. Liu, K.F. Zhang, Opt. Eng. 50, 113801 (2011)

    Article  ADS  Google Scholar 

  7. D.Y. Jiang, C.X. Shan, J.Y. Zhang, Y.M. Lu, B. Yao, D.X. Zhao, Z.Z. Zhang, D.Z. Shen, C.L. Yang, J. Phys. D Appl. Phys. 42, 025106 (2009)

    Article  ADS  Google Scholar 

  8. Y.N. Hou, Z.X. Mei, H.L. Liang, D.Q. Ye, C.Z. Gu, X.L. Du, Y.C. Lu, IEEE Trans. Electron Devices 60, 3474 (2013)

    Article  Google Scholar 

  9. D.Y. Kim, J. Ryu, J. Manders, J. Lee, F. So, Acs Appl. Mater. Interfaces 6, 1370 (2014)

    Article  Google Scholar 

  10. W. Dai, X.H. Pan, S.S. Chen, C. Chen, Z. Wen, H.H. Zhang, Z.Z. Ye, J. Mater. Chem. C (2014). doi:10.1039/C4TC00157E

    Google Scholar 

  11. T.D. Dao, C.T.T. Dang, G. Han, C.V. Hoang, W. Yi, V. Narayanamurti, T. Nagao, Appl. Phys. Lett. 103, 193119 (2013)

    Article  ADS  Google Scholar 

  12. H.L. Liang, Z.X. Mei, Q.H. Zhang, L. Gu, S. Liang, Y.N. Hou, D.Q. Ye, C.Z. Gu, R.C. Yu, X.L. Du, Appl. Phys. Lett. 98, 221902 (2011)

    Article  ADS  Google Scholar 

  13. J.W. Kang, Y.S. Choi, B.H. Kim, C.G. Kang, B.H. Lee, C.W. Tu, S.J. Park, Appl. Phys. Lett. 104, 051120 (2014)

    Article  ADS  Google Scholar 

  14. Z.P. Wei, B. Yao, Z.Z. Zhang, Y.M. Lu, D.Z. Shen, B.H. Li, X.H. Wang, J.Y. Zhang, D.X. Zhao, X.W. Fan, Appl. Phys. Lett. 89, 102104 (2006)

    Article  ADS  Google Scholar 

  15. S.K. Mohanta, A. Nakamura, J. Temmyo, J. Cryst. Growth 375, 1 (2013)

    Article  ADS  Google Scholar 

  16. G. Shukla, J. Phys. D Appl. Phys. 42, 075105 (2009)

    Article  ADS  Google Scholar 

  17. Y.M. Guo, L.P. Zhu, J. Jiang, L. Hu, C.L. Ye, Z.Z. Ye, Appl. Phys. Lett. 101, 052109 (2012)

    Article  ADS  Google Scholar 

  18. T.T. Zhou, B. Lu, C.J. Wu, Z.Z. Ye, J.G. Lu, X.H. Pan, J. Appl. Phys. 114, 143707 (2013)

    Article  ADS  Google Scholar 

  19. Y.M. Zhao, J.Y. Zhang, D.Y. Jiang, C.X. Shan, Z.Z. Zhang, B. Yao, D.X. Zhao, D.Z. Shen, J. Phys. D Appl. Phys. 42, 092007 (2009)

    Article  ADS  Google Scholar 

  20. Y.H. Kwon, S.H. Chun, H.K. Cho, J. Vac. Sci. Technol., A 31, 041501 (2013)

    Article  Google Scholar 

  21. L. Cao, X.Y. Li, D.X. Wang, L.P. Zhu, Mater. Lett. 110, 73 (2013)

    Article  Google Scholar 

  22. Z.G. Yang, L.P. Zhu, Y.M. Guo, Z.Z. Ye, B.H. Zhao, Thin Solid Films 519, 5174 (2011)

    Article  ADS  Google Scholar 

  23. Y.M. Guo, L.P. Zhu, J. Jiang, Y.G. Li, L. Hu, H.B. Xu, Z.Z. Ye, Thin Solid Films 558, 311 (2014)

    Article  ADS  Google Scholar 

  24. J.J. Chen, F. Ren, Y.J. Li, D.P. Norton, S.J. Pearton, A. Osinsky, J.W. Dong, P.P. Chow, J.F. Weaver, Appl. Phys. Lett. 87, 192106 (2005)

    Article  ADS  Google Scholar 

  25. H.H. Zhang, X.H. Pan, B. Lu, J.Y. Huang, P. Ding, W. Chen, H.P. He, J.G. Lu, S.S. Chen, Z.Z. Ye, Phys. Chem. Chem. Phys. 15, 11231 (2013)

    Article  Google Scholar 

  26. S.J. Pearton, W.T. Lim, J.S. Wright, L.C. Tien, H.S. Kim, D.P. Norton, H.T. Wang, B.S. Kang, F. Ren, J. Jun, J. Lin, A. Osinsky, J. Electron. Mater. 37, 1426 (2008)

    Article  ADS  Google Scholar 

  27. P. Das Gupta, S. Chattopadhyay, R.J. Choudhary, D.M. Phase, P. Sen, Mater. Lett. 65, 2073 (2011)

    Article  Google Scholar 

  28. S.C. Su, Y.M. Lu, Z.Z. Zhang, C.X. Shan, B.H. Li, D.Z. Shen, B. Yao, J.Y. Zhang, D.X. Zhao, X.W. Fan, Appl. Phys. Lett. 93, 082108 (2008)

    Article  ADS  Google Scholar 

  29. S.H. Wei, A. Zunger, Appl. Phys. Lett. 72, 2011 (1998)

    Article  ADS  Google Scholar 

  30. K.S. Kim, R.E. Davis, J. Electron Spectrosc. 1, 251 (1972)

    Article  Google Scholar 

  31. S.K. Hong, T. Hanada, H. Makino, Y.F. Chen, H.J. Ko, T. Yao, A. Tanaka, H. Sasaki, S. Sato, Appl. Phys. Lett. 78, 3349 (2001)

    Article  ADS  Google Scholar 

  32. P.D.C. King, T.D. Veal, P.H. Jefferson, C.F. McConville, T. Wang, P.J. Parbrook, H. Lu, W.J. Schaff, Appl. Phys. Lett. 90, 132105 (2007)

    Article  ADS  Google Scholar 

  33. Y.M. Guo, L.P. Zhu, J. Jiang, Y.G. Li, L. Hu, H.B. Xu, Z.Z. Ye, J. Alloy. Compd. 602, 294 (2014)

    Article  Google Scholar 

  34. A. Janotti, C.G. Van de Walle, Phys. Rev. B 75, 121201 (2007)

    Article  ADS  Google Scholar 

  35. J.K. Deng, M. Mortazavi, N.V. Medhekar, J.Z. Liu, J. Appl. Phys. 112, 123703 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China 51372224, Program for Innovative Research Team in University of Ministry of Education of China (IRT13037), and National Science and Technology Support Program (2012BAC08B08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ping Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, YM., Zhu, LP., Niu, WZ. et al. Valence-band offset of n-Zn0.8Mg0.2O/p-Ni0.8Mg0.2O heterojunction with tunable bandgaps of both sides measured by X-ray photoelectron spectroscopy. Appl. Phys. A 118, 239–242 (2015). https://doi.org/10.1007/s00339-014-8666-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8666-y

Keywords

Navigation