Skip to main content

Effect of guided resonance modes on emission from GaN core–shell nanorod arrays


We model the process of incoherent emission from \(\hbox {In}_{x}\hbox {Ga}_{1-x}\hbox {N/GaN}\) quantum wells in GaN core–shell nanorod arrays using finite-difference time-domain simulations. We find that high-intensity features in the emitted field correspond to guided resonance modes near the \(\varGamma \)-point of the photonic band structure. We identify one \(\varGamma \)-point mode whose electric field intensity profile is ideal for core–shell nanorod array geometries. Using this mode, we are able to simultaneously enhance the radiative recombination rate and extraction efficiency relative to an in-filled slab. We determine the conditions on radiative and nonradiative recombination rates for which the nanorod array has a higher internal and external quantum efficiency than a reference slab. We present one nanorod array geometry where the external quantum efficiency is enhanced up to a factor of 25.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. T. Takeuchi, H. Takeuchi, S. Sota, H. Sakai, H. Amano, I. Akasaki, Jpn. J. Appl. Phys. 36, L177–L179 (1997)

    ADS  Article  Google Scholar 

  2. T.-W. Yeh, Y.-T. Lin, B. Ahn, L.S. Stewart, P.D. Dapkus, S.R. Nutt, Appl. Phys. Lett. 100, 033119 (2012)

    ADS  Article  Google Scholar 

  3. H. Zhong, A. Tyagi, N.N. Fellows, F. Wu, R.B. Chung, M. Saito, K. Fujito, J.S. Speck, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 90, 233504–233503 (2007)

    ADS  Article  Google Scholar 

  4. P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K.H. Ploog, Nature 406, 865–868 (2000)

    ADS  Article  Google Scholar 

  5. S. Li, A. Waag, J. Appl. Phys. 111, 071101 (2012)

    ADS  Article  Google Scholar 

  6. T.-W. Yeh, Y.-T. Lin, L.S. Stewart, P.D. Dapkus, R. Sarkissian, J. D. OBrien, B. Ahn and S. R. Nutt. Nano Lett. 12, 3257–3262 (2012)

    Article  Google Scholar 

  7. C. Wiesmann, K. Bergenek, N. Linder, U.T. Schwarz, Laser Photon. Rev. 3, 262–286 (2009)

    Article  Google Scholar 

  8. J.J. Wierer, A. David, M.M. Megens, Nat. Photon. 3, 163–169 (2009)

    ADS  Article  Google Scholar 

  9. A.A. Erchak, D.J. Ripin, S. Fan, P. Rakich, J.D. Joannopoulos, E.P. Ippen, G.S. Petrich, L.A. Kolodziejski, Appl. Phys. Lett. 78, 563–565 (2001)

    ADS  Article  Google Scholar 

  10. S. Fan, P.R. Villeneuve, J.D. Joannopoulos, E.F. Schubert, Phys. Rev. Lett. 78, 3294–3297 (1997)

    ADS  Article  Google Scholar 

  11. R.K. Lee, Y. Xu, A. Yariv, J. Opt. Soc. Am. B 17, 1438–1442 (2000)

    ADS  Article  Google Scholar 

  12. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, S. Noda, Science 308, 1296–1298 (2005)

    ADS  Article  Google Scholar 

  13. A. David, H. Benisty, C. Weisbuch, Opt. Express 15, 17991–18004 (2007)

    ADS  Article  Google Scholar 

  14. S.L. Diedenhofen, O.T.A. Janssen, M. Hocevar, A. Pierret, E.P.A.M. Bakkers, H.P. Urbach, J. Gmez Rivas, and. ACS Nano 5, 5830–5837 (2011)

    Article  Google Scholar 

  15. C. Klper, M. Sabathil, F. Rmer, M. Mandl, M. Strassburg, B. Witzigmann, Phys. Status Solidi A 209, 2304–2312 (2012)

    ADS  Article  Google Scholar 

  16. C. Xu, R. Biswas, K.-M. Ho, Opt. Commun. 287, 250–253 (2013)

    ADS  Article  Google Scholar 

  17. S. Fan, J.D. Joannopoulos, Phys. Rev. B 65, 235112 (2002)

    ADS  Article  Google Scholar 

  18. S.G. Tikhodeev, A.L. Yablonskii, E.A. Muljarov, N.A. Gippius, T. Ishihara, Phys. Rev. B 66, 045102 (2002)

    ADS  Article  Google Scholar 

  19. T. Kouno, K. Kishino, K. Yamano, A. Kikuchi, Opt. Express 17, 20440–20447 (2009)

    ADS  Article  Google Scholar 

  20. J. B. Wright, S. Liu, G. T. Wang, Q. Li, A. Benz, D. D. Koleske, P. Lu, H. Xu, L. Lester, T. S. Luk, I. Brener, and G. Subramania, Sci. Rep. 3 (2013)

  21. H.-Y. Ryu, J. Korean, Phys. Soc. 58, 878–882 (2011)

    Google Scholar 

  22. Y. Xu, J.S. Vukovi, R.K. Lee, O.J. Painter, A. Scherer, A. Yariv, J. Opt. Soc. Am. B 16, 465–474 (1999)

    ADS  Article  Google Scholar 

  23. S. Adachi, Optical Constants of Crystalline and Amorphous Semiconductors (Kluwer, Norwell, 1999)

    Book  Google Scholar 

  24. S.G. Johnson, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, L.A. Kolodziejski, Phys. Rev. B 60, 5751–5758 (1999)

    ADS  Article  Google Scholar 

  25. K. Sakoda, Phys. Rev. B 52, 7982–7986 (1995)

    ADS  Article  Google Scholar 

  26. J.O. Grepstad, M.M. Greve, B. Holst, I.-R. Johansen, O. Solgaard, A. Sudb, Opt. Express 21, 23640–23654 (2013)

    Article  Google Scholar 

  27. E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda Nature 441 (2006)

Download references


P. Duke Anderson and Michelle L. Povinelli were funded by the Center for Energy Nanoscience, an Energy Frontiers Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-SC0001013. Chenxi Lin was supported by the USC Graduate School’s Theodore & Wen-Hui Chen Fellowship. The authors would like to thank P. Daniel Dapkus for discussions on core–shell GaN nanorod array LEDs and Ningfeng Huang for optical modeling input. Computing resources were provided by the USC Center for High Performance Computing and Communication (HPCC).

Author information

Authors and Affiliations


Corresponding author

Correspondence to P. Duke Anderson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Anderson, P.D., Lin, C. & Povinelli, M.L. Effect of guided resonance modes on emission from GaN core–shell nanorod arrays. Appl. Phys. A 117, 1879–1884 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Extraction Efficiency
  • Nanorod Array
  • External Quantum Efficiency
  • Array Size
  • Internal Quantum Efficiency