Skip to main content
Log in

Band engineering of ZnS by codoping for visible-light photocatalysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Codoping is demonstrated as an efficient approach to narrow the band gap of ZnS and enhance its photocatalytic activity. Herein, we perform the density-function theory calculations of ZnS by codoping of X (N, F) with transition metals (TM = V, Cu). The band gap is reduced in four different types of codoped ZnS. In particular, CuZnFS codoping, a charge-compensated donor–acceptor pair, leads to an about 32 % reduction of the energy gap, thus extending the absorption edge to visible-light region. The band gap reduction is due to the upshift of the top valence band comprised with the delocalized hybridizing levels of Cu 3d and S 3p states, and the downshift of the bottom conduction band consisting of F 2s states. Moreover, the larger value of m e*/m h* in CuZnFS–ZnS would result in a lower recombination rate of the electron–hole pairs. Both band gap reduction and low recombination rate are critical elements for efficient light-to-current conversion in codoped ZnS. These findings raise the prospect of using codoped ZnS with specifically engineered electronic properties in a variety of photocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69 (1995)

    Article  Google Scholar 

  2. K. Maeda, K. Teramura, D.L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 440, 295 (2006)

    Article  ADS  Google Scholar 

  3. A. Kubacka, F.G. Marcos, G. Colon, Chem. Rev. 112, 1555 (2011)

    Article  Google Scholar 

  4. H. Tong, S.H. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 24, 229 (2012)

    Article  Google Scholar 

  5. G.F. Huang, Z.L. Ma, W.Q. Huang, Y. Tian, C. Jiao, Z.M. Yang, Z. Wan, A. Pan, J. Nanomater. 2013, 371356 (2013)

    Google Scholar 

  6. K. Hashimoto, H. Irie, A. Fujishima, Jpn. J. Appl. Phys. 44, 8269 (2005)

    Article  ADS  Google Scholar 

  7. J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, L.Z. Zhang, Chem. Mater. 14, 3808 (2002)

    Article  Google Scholar 

  8. A. Kudo, M. Sekizawa, Chem. Commun. 15, 1371 (2000)

    Article  Google Scholar 

  9. J.S. Hu, L.L. Ren, Y.G. Guo, H.P. Liang, A.M. Cao, L.J. Wan, C.L. Bai, Angew. Chem. Int. Ed. 44, 1269 (2005)

    Article  Google Scholar 

  10. X.S. Fang, T.Y. Zhai, U.K. Gautam, L. Li, L.M. Wu, B. Yoshio, D. Golberg, Prog. Mater. Sci. 56, 175 (2011)

    Article  Google Scholar 

  11. Y. Chen, G.F. Huang, W.Q. Huang, L.L. Wang, Y. Tian, Z.L. Ma, Z.M. Yang, Mater. Lett. 75, 221 (2012)

    Article  Google Scholar 

  12. Y. Tian, G.F. Huang, L.J. Tang, M.G. Xia, W.Q. Huang, Z.L. Ma, Mater. Lett. 83, 104 (2012)

    Article  Google Scholar 

  13. J. Nanda, S. Sapra, D.D. Sarma, Chem. Mater. 12, 1018 (2000)

    Article  Google Scholar 

  14. F.H. Jiang, J. Zhang, Appl. Phys. A 105, 411 (2011)

    Article  ADS  Google Scholar 

  15. S. Yanagida, Y. Ishimaru, Y. Miyake, T. Shiragami, C. Pac, K. Hashimoto, T. Sakata, J. Phys. C. 93, 2576 (1989)

    Google Scholar 

  16. C. Corrado, J.K. Cooper, J.Z. Zhang, Sci. Adv. Mater. 4, 254 (2012)

    Article  Google Scholar 

  17. J. Zhang, S.W. Liu, J.G. Yu, M. Jaroniec, J. Mater. Chem. 21, 14655 (2011)

    Article  Google Scholar 

  18. S. Sapra, A. Prakash, A. Ghangrekar, N. Periasamy, D.D. Sarma, J. Phys. Chem. B. 109, 1663 (2005)

    Article  Google Scholar 

  19. M.G. Brik, I.V. Kityk, Phys. Status Solidi B 245, 163 (2008)

    Article  ADS  Google Scholar 

  20. Y. Chen, G.F. Huang, W.Q. Huang, B.S. Zou, A.L. Pan, Appl. Phys. A 108, 895 (2012)

    Article  ADS  Google Scholar 

  21. C.S. Yang, G.F. An, Y.W. Zhou, X.P. Zhao, Appl. Phys. A 111, 633 (2013)

    Article  ADS  Google Scholar 

  22. X.Y. Ma, J. Nanomater. 2011, 952615 (2011)

    Google Scholar 

  23. T. Taguchi, T. Yokogawa, S. Fujita, M. Satoh, Y. Inuishi, J. Cryst. Growth 59, 317 (1982)

    Article  ADS  Google Scholar 

  24. Y.Y. Chen, J.G. Duh, B.S. Chiou, C.G. Peng, Thin Solid Films 392, 50 (2001)

    Article  ADS  Google Scholar 

  25. J.M. Herrmann, J. Disdier, P. Pichat, Chem. Phys. Lett. 108, 618 (1984)

    Article  ADS  Google Scholar 

  26. W. Mu, J.M. Herrmann, P. Pichat, Catal. Lett. 3, 73 (1989)

    Article  Google Scholar 

  27. Y.Q. Gai, J.B. Li, S.S. Li, J.B. Xia, S.H. Wei, Phys. Rev. Lett. 102, 036402 (2009)

    Article  ADS  Google Scholar 

  28. W.G. Zhu, X.F. Qiu, V. Lancu, X.Q. Chen, H. Pan, W. Wang, N.M. Dimitrijevic, T. Rajh, H.M. Meyer, M.P. Paranthaman, G.M. Stocks, H.H. Weitering, B. Gu, G. Eres, Z. Zhang, Phys. Rev. Lett. 103, 226401 (2009)

    Article  ADS  Google Scholar 

  29. W.J. Yin, S.H. Wei, M.M. Al-Jassim, Y.F. Yan, Phys. Rev. Lett. 106, 066801 (2011)

    Article  ADS  Google Scholar 

  30. X.Y. Cui, S.Z. Rong, Y.L. Cao, Y.K. Yin, S.J. Li, M.J. Li, Appl. Phys. A 113, 47 (2013)

    Article  ADS  Google Scholar 

  31. T. Hatayama, S. Fukumoto, S. Ibuki, Jpn. J. Appl. Phys. 31, 3383 (1992)

    Article  ADS  Google Scholar 

  32. R. Boyn, S. Muller, J. Dziesiaty, H. Zimmermann, J. Phys.: Condens. Matter. 7, 9061 (1995)

    Article  ADS  Google Scholar 

  33. D. Hommel, H. Hartmann, W. Busse, H.E. Gumlich, J. Kreissl, J. Lumin. 48–49, 655 (1991)

    Article  Google Scholar 

  34. Y. Ping, M.K. Lu, D. Xu, D.R. Yuan, C.F. Song, S.W. Liu, X.F. Cheng, Opt. Mater. 24, 497 (2003)

    Article  ADS  Google Scholar 

  35. W. Chen, A.G. Joly, J.O. Malm, J.O. Bovin, J. Appl. Phys. 95, 667 (2004)

    Article  ADS  Google Scholar 

  36. A. Divya, B.K. Reddy, S. Sambasivam, K.S. Kumar, Phys. E 44, 541 (2011)

    Article  Google Scholar 

  37. S.H. Yang, C.H. Wang, Y.H. Ling, Solid State Sci. 13, 584 (2011)

    Article  ADS  Google Scholar 

  38. D.F. Li, B. Deng, S.W. Xue, Z.G. Wang, Appl. Phys. Lett. 99, 052109 (2011)

    Article  ADS  Google Scholar 

  39. D.F. Li, M. Luo, B.L. Li, C.B. Wu, B. Deng, Adv. Condens. Matter. Phys. 2013, 739078 (2013)

    Google Scholar 

  40. I. Tsuji, A. Kudo, J. Photochem. Photobiol. A 156, 249 (2003)

    Article  Google Scholar 

  41. M. Muruganandham, Y. Kusumoto, J. Phys. Chem. C 113, 16144 (2009)

    Article  Google Scholar 

  42. H.G. Sun, X. Zhao, L. Zhang, W.L. Fan, J. Phys. Chem. C 115, 2218 (2011)

    Article  Google Scholar 

  43. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter. 14, 2717 (2002)

    Article  ADS  Google Scholar 

  44. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  45. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  46. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  47. S. Ves, U. Schwarz, N.E. Christensen, K. Syassen, M. Cardona, Phys. Rev. B 42, 9113 (1990)

    Article  ADS  Google Scholar 

  48. C.Y. Yeh, S.H. Wei, A. Zunger, Phys. Rev. B 50, 2715 (1994)

    Article  ADS  Google Scholar 

  49. X.G. Yan, W.Q. Huang, G.F. Huang, L. Xu, S.Q. Zhan, Z.M. Yang, Z. Wan, P. Peng, Sci. Adv. Mater. 6, 1221 (2014)

    Article  Google Scholar 

  50. Z.L. Ma, G.F. Huang, D.S. Xu, W.Q. Huang, Y. Tian, Mater. Lett. 108, 37 (2013)

    Article  Google Scholar 

  51. C.X. Zhu, Z.L. Huo, Z.G. Xu, M.H. Zhang, Q. Wang, J. Liu, S.B. Long, M. Liu, Appl. Phys. Lett. 97, 253503 (2010)

    Article  ADS  Google Scholar 

  52. C.J. Wang, Z.L. Huo, Z.Y. Liu, Y. Liu, Y.X. Cui, Y.M. Wang, F.H. Li, M. Liu, J. Appl. Phys. 52, 070201 (2013)

    Article  Google Scholar 

  53. K. Jayanthi, S. Chawla, H. Chander, D. Haranath, Cryst. Res. Technol. 42, 976 (2007)

    Article  Google Scholar 

  54. R.K. Srivastava, N. Pandey, S.K. Mishra, Mater. Sci. Semicond. Process. 16, 1659 (2013)

    Article  Google Scholar 

  55. Y.T. Nien, I.G. Chen, C.S. Hwang, S.Y. Chu, J. Phys. Chem. Solids 69, 366 (2008)

    Article  ADS  Google Scholar 

  56. C.P. Cheney, P. Vilmercati, E.W. Martin, M. Chiodi, L. Gavioli, M. Regmi, G. Eres, T.A. Callcott, H.H. Weitering, N. Mannella, Phys. Rev. Lett. 112, 036404 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Hunan Provincial Natural Science Foundation of China (Grant No. 12JJ3009), Science and Technology Plan Projects of Hunan Province (2013SK3148).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Qing Huang or Gui-Fang Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, H., Xu, L., Huang, WQ. et al. Band engineering of ZnS by codoping for visible-light photocatalysis. Appl. Phys. A 116, 741–750 (2014). https://doi.org/10.1007/s00339-014-8580-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8580-3

Keywords

Navigation