Skip to main content
Log in

Electron beam induced surface activation: a method for the lithographic fabrication of nanostructures via catalytic processes

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In focused electron beam induced processing (FEBIP), the very narrow electron beam of a scanning electron microscope or transmission electron microscope is used to locally modify matter on the nanometer scale. Recently, the family of FEBIP could be considerably expanded by the technique of focused electron beam induced surface activation (EBISA). In EBISA, the surface itself gets chemically activated by the impact of the electron beam without the presence of precursor molecules. In the second EBISA processing step, the surface is exposed to a precursor molecule which is then catalytically decomposed at the pre-irradiated/activated areas and eventually continues to grow autocatalytically upon prolonged precursor dosage. In this way, electron irradiation and precursor dosage are effectively separated. One of the advantages is that, due to the autocatalytic growth, the size of the corresponding nanostructures can be controlled by the precursor dosage and corresponding electron proximity effects can be omitted. Another advantage is the parallel processing of the pre-irradiated regions during precursor dosage. This bears the potential to significantly reduce the fabrication times for larger deposits compared to the classical electron beam induced deposition approach, in which precursor molecules are sequentially dissociated by the impact of the electron. The fundamentals and apparent further developments as well as the potential and challenges of the comparably new EBISA technique, and more general of catalytic effects in FEBIP are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Vollnhals, P. Wintrich, M.-M. Walz, H.-P. Steinrück, H. Marbach, Electron beam induced surface activation of ultrathin porphyrin layers on Ag(111). Langmuir 29, 12290 (2013)

    Article  Google Scholar 

  2. F. Vollnhals et al., Electron beam-induced writing of nanoscale iron wires on a functional metal oxide. J. Phys. Chem. C 117, 17674 (2013)

    Article  Google Scholar 

  3. M.-M. Walz et al., Electrons as “invisible ink”: fabrication of nanostructures by local electron beam induced activation of SiOx. Angew. Chem. Int. Ed. 49, 4669 (2010)

    Article  Google Scholar 

  4. M.-M. Walz, F. Vollnhals, M. Schirmer, H.-P. Steinrück, H. Marbach, Generation of clean iron nanocrystals on an ultra-thin SiOx film on Si(001). Phys. Chem. Chem. Phys. 13, 17333 (2011)

    Article  Google Scholar 

  5. A. Turchanin et al., Molecular mechanisms of electron-induced cross-linking in aromatic SAMs. Langmuir 25, 7342 (2009)

    Article  Google Scholar 

  6. W. Eck et al., Generation of surface amino groups on aromatic self-assembled monolayers by low energy electron beams: a first step towards chemical lithography. Adv. Mater. 12, 805 (2000)

    Article  Google Scholar 

  7. A. Gölzhäuser et al., Chemical nanolithography with electron beams. Adv. Mater. 13, 806 (2001)

    Article  Google Scholar 

  8. M. Zharnikov, M. Grunze, Modification of thiol-derived self-assembling monolayers by electron and x-ray irradiation: scientific and lithographic aspects. J. Vac. Sci. Technol. B 20, 1793 (2002)

    Article  Google Scholar 

  9. A. Vittadini et al., Defects in oxygen-depleted titanate nanostructures. Langmuir 28, 7851 (2012)

    Article  Google Scholar 

  10. I. Utke, A. Gölzhäuser, Small, minimally invasive, direct: electrons induce local reactions of adsorbed functional molecules on the nanoscale. Angew. Chem. Int. Ed. 49, 9328 (2010)

    Article  Google Scholar 

  11. C.R. Arumainayagam, H.L. Lee, R.B. Nelson, D.R. Haines, R.P. Gunawardane, Low-energy electron-induced reactions in condensed matter. Surf. Sci. Rep. 65, 1 (2010)

    Article  ADS  Google Scholar 

  12. B.A. Joyce, J.H. Neave, Electron beam-adsorbate interactions on silicon surfaces. Surf. Sci. 34, 401 (1973)

    Article  ADS  Google Scholar 

  13. C. Klauber, M.D. Alvey, J.T. Yates Jr, NH3 adsorption on Ni(110) and the production of the NH2 species by electron irradiation. Surf. Sci. 154, 139 (1985)

    Article  ADS  Google Scholar 

  14. R.D. Ramsier, M.A. Henderson, J.T. Yates, Electron induced decomposition of Ni(Co)4 adsorbed on Ag(111). Surf. Sci. 257, 9 (1991)

    Article  ADS  Google Scholar 

  15. J.M. White, Using photons and electrons to drive surface chemical reactions. J. Mol. Catal. A Chem. 131, 71 (1998)

    Article  Google Scholar 

  16. H.W.P. Koops, R. Weiel, D.P. Kern, T.H. Baum, High-resolution electron-beam induced deposition. J. Vac. Sci. Technol. B 6, 477 (1988)

    Article  Google Scholar 

  17. S. Matsui, T. Ichihashi, M. Mito, Electron beam induced selective etching and deposition technology. J. Vac. Sci. Technol. B 7, 1182 (1989)

    Article  Google Scholar 

  18. S. Matsui, K. Mori, New selective deposition technology by electron-beam induced surface reaction. J. Vac. Sci. Technol. B 4, 299 (1986)

    Article  Google Scholar 

  19. S.-W. Hla, K.-H. Rieder, STM Control Of Chemical Reactions: single-molecule synthesis. Annu. Rev. Phys. Chem. 54, 307 (2003)

    Article  ADS  Google Scholar 

  20. M.A. Walsh, M.C. Hersam, Atomic-scale templates patterned by ultrahigh vacuum scanning tunneling microscopy on silicon. Annu. Rev. Phys. Chem. 60, 193 (2009)

    Article  ADS  Google Scholar 

  21. I. Utke, P. Hoffmann, J. Melngailis, Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B 26, 1197 (2008)

    Article  Google Scholar 

  22. W.F. van Dorp, C.W. Hagen, A critical literature review of focused electron beam induced deposition. J. Appl. Phys. 104, 081301 (2008)

    Article  ADS  Google Scholar 

  23. S.J. Randolph, J.D. Fowlkes, P.D. Rack, Focused, nanoscale electron-beam-induced deposition and etching. Crit. Rev. Solid State Mater. Sci. 31, 55 (2006)

    Article  ADS  Google Scholar 

  24. K. Edinger et al., Electron-beam-based photomask repair. J. Vac. Sci. Technol., B 22, 2902 (2004)

    Article  Google Scholar 

  25. G. Boero et al., Submicrometer Hall devices fabricated by focused electron-beam-induced deposition. Appl. Phys. Lett. 86, 042503 (2005)

    Article  ADS  Google Scholar 

  26. Y.M. Lau, P.C. Chee, J.T.L. Thong, V. Ng, Properties and Applications of Cobalt-Based Material Produced by Electron-Beam-Induced Deposition, in 38th National Symposium of the American Vacuum Society, vol. 20 (2002), p. 1295

  27. M. Schirmer et al., Electron-beam-induced deposition and post-treatment processes to locally generate clean titanium oxide nanostructures on Si(100). Nanotechnology 22, 085301 (2011)

    Article  ADS  Google Scholar 

  28. M.-M. Walz et al., Thin membranes versus bulk substrates: investigation of proximity effects in focused electron beam-induced processing. J. Phys. D Appl. Phys. 45, 225306 (2012)

    Article  ADS  Google Scholar 

  29. M.-M. Walz et al., Investigation of Proximity Effects in Electron Microscopy and Lithography. Appl. Phys. Lett. 100, 053118 (2012)

    Article  ADS  Google Scholar 

  30. T. Bret, I. Utke, P. Hoffmann, M. Abourida, P. Doppelt, Electron range effects in focused electron beam induced deposition of 3D nanostructures. Microelectron. Eng. 83, 1482 (2006)

    Article  Google Scholar 

  31. V. Gopal et al., Rapid prototyping of site-specific nanocontacts by electron and ion beam assisted direct-write nanolithography. Nano Lett. 4, 2059 (2004)

    Article  ADS  Google Scholar 

  32. V. Gopal, E.A. Stach, V.R. Radmilovic, I.A. Mowat, Metal delocalization and surface decoration in direct-write nanolithography by electron beam induced deposition. Appl. Phys. Lett. 85, 49 (2004)

    Article  ADS  Google Scholar 

  33. H. Plank, D.A. Smith, T. Haber, P.D. Rack, F. Hofer, Fundamental proximity effects in focused electron beam induced deposition. ACS Nano 6, 286 (2011)

    Article  Google Scholar 

  34. W.F. van Dorp, S. Lazar, C.W. Hagen, P. Kruit, Solutions to a proximity effect in high resolution electron beam induced deposition. J. Vac. Sci. Technol. B 25, 1603 (2007)

    Article  Google Scholar 

  35. A. Botman, J.J.L. Mulders, C.W. Hagen, Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20, 372001 (2009)

    Article  Google Scholar 

  36. A. Botman, J.J.L. Mulders, R. Weemaes, S. Mentink, Purification of platinum and gold structures after electron-beam-induced deposition. Nanotechnology 17, 3779 (2006)

    Article  ADS  Google Scholar 

  37. T. Lukasczyk, M. Schirmer, H.-P. Steinrück, H. Marbach, Electron-beam-induced deposition in ultrahigh vacuum: lithographic fabrication of clean iron nanostructures. Small 4, 841 (2008)

    Article  Google Scholar 

  38. M. Schirmer et al., Fabrication of layered nanostructures by successive electron beam induced deposition with two precursors: protective capping of metallic iron structures. Nanotechnology 22, 475304 (2011)

    Article  ADS  Google Scholar 

  39. F. Porrati et al., Magnetotransport properties of iron microwires fabricated by focused electron beam induced autocatalytic growth. J. Phys. D Appl. Phys. 44, 425001 (2011)

    Article  ADS  Google Scholar 

  40. K. Muthukumar et al., Spontaneous dissociation of Co2(CO)8 and autocatalytic growth of Co on SiO2: a combined experimental and theoretical investigation. Beilstein J. Nanotechnol. 3, 546 (2012)

    Article  Google Scholar 

  41. A. Fernández-Pacheco, J.M. De Teresa, R. Córdoba, M.R. Ibarra, Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. J. Phys. D Appl. Phys. 42, 055005 (2009)

    Article  ADS  Google Scholar 

  42. L.M. Belova et al., Rapid electron beam assisted patterning of pure cobalt at elevated temperatures via seeded growth. Nanotechnology 22, 145305 (2011)

    Article  ADS  Google Scholar 

  43. A.J.M. Mackus, S.A.F. Dielissen, J.J.L. Mulders, W.M.M. Kessels, Nanopatterning by direct-write atomic layer deposition. Nanoscale 4, 4477 (2012)

    Article  ADS  Google Scholar 

  44. S. Engmann et al., Absolute cross sections for dissociative electron attachment and dissociative ionization of cobalt tricarbonyl nitrosyl in the energy range from 0 eV to 140 eV. J. Chem. Phys. 138, 044305 (2013)

    Article  ADS  Google Scholar 

  45. G.C. Gazzadi et al., Focused electron beam deposition of nanowires from cobalt tricarbonyl nitrosyl (Co(CO)3NO) precursor. J. Phys. Chem. C 115, 19606 (2011)

    Article  Google Scholar 

  46. G.C. Gazzadi et al., Characterization of a new cobalt precursor for focused beam deposition of magnetic nanostructures. Microelectron. Eng. 88, 1955 (2011)

    Article  Google Scholar 

  47. J.J.L. Mulders, L.M. Belova, A. Riazanova, Electron beam induced deposition at elevated temperatures: compositional changes and purity improvement. Nanotechnology 22, 055302 (2011)

    Article  ADS  Google Scholar 

  48. S.G. Rosenberg, M. Barclay, D.H. Fairbrother, Electron beam induced reactions of adsorbed cobalt tricarbonyl nitrosyl (Co(CO)3NO) molecules. J. Phys. Chem. C 117, 16053 (2013)

    Article  Google Scholar 

  49. I. Utke et al., Thermal effects during focused electron beam induced deposition of nanocomposite magnetic-cobalt-containing tips. Microelectron. Eng. 73–74, 553 (2004)

    Article  Google Scholar 

  50. M.A. Bruk et al., Focused electron beam-induced deposition of iron- and carbon-containing nanostructures from triiron dodecacarbonyl vapor. High Energy Chem. 39, 65 (2005)

    Article  Google Scholar 

  51. G. Hochleitner, H.D. Wanzenboeck, E. Bertagnolli, Electron beam induced deposition of iron nanostructures. J. Vac. Sci. Technol. B 26, 939 (2008)

    Article  Google Scholar 

  52. M. Shimojo, M. Takeguchi, K. Furuya, Formation of crystalline iron oxide nanostructures by electron beam-induced deposition at room temperature. Nanotechnology 17, 3637 (2006)

    Article  ADS  Google Scholar 

  53. M. Shimojo, M. Takeguchi, M. Tanaka, K. Mitsuishi, K. Furuya, Electron beam-induced deposition using iron carbonyl and the effects of heat treatment on nanostructure. Appl. Phys. A Mater. Sci. Process. 79, 1869 (2004)

    Article  ADS  Google Scholar 

  54. M. Takeguchi et al., Fabrication of nanostructures with different iron concentration by electron beam induced deposition with a mixture gas of iron carbonyl and ferrocene, and their magnetic properties. J. Mater. Sci. 41, 4532 (2006)

    Article  ADS  Google Scholar 

  55. W. Zhang, M. Shimojo, M. Takeguchi, R.C. Che, K. Furuya, Generation mechanism and in situ growth behavior of alpha-iron nanocrystals by electron beam induced deposition. Adv. Eng. Mater. 8, 711 (2006)

    Article  Google Scholar 

  56. M. Gavagnin, H.D. Wanzenboeck, D. Belić, E. Bertagnolli, Synthesis of individually tuned nanomagnets for nanomagnet logic by direct write focused electron beam induced deposition. ACS Nano 7, 777 (2012)

    Article  Google Scholar 

  57. M. Huth et al., Focused electron beam induced deposition: a perspective. Beilstein J. Nanotechnol. 3, 597 (2012)

    Article  Google Scholar 

  58. R.R. Kunz, T.M. Mayer, Electron beam induced surface nucleation and low-temperature decomposition of metal carbonyls. J. Vac. Sci. Technol., B 6, 1557 (1988)

    Article  Google Scholar 

  59. R.R. Kunz, T.E. Allen, T.M. Mayer, Selective area deposition of metals using low-energy electron beams. J. Vac. Sci. Technol. B 5, 1427 (1987)

    Article  Google Scholar 

  60. R.R. Kunz, T.M. Mayer, Catalytic growth rate enhancement of electron beam deposited iron films. Appl. Phys. Lett. 50, 962 (1987)

    Article  ADS  Google Scholar 

  61. F. Zaera, Mechanism for the decomposition of iron pentacarbonyl on platinum(111): evidence for iron tetracarbonyl and iron tricarbonyl intermediates. Surf. Sci. 255, 280 (1991)

    Article  ADS  Google Scholar 

  62. F. Zaera, A kinetic study of the chemical vapor deposition of iron films using iron pentacarbonyl. Langmuir 7, 1188 (1991)

    Article  Google Scholar 

  63. M. Xu, F. Zaera, Mechanistic studies of the thermal decomposition of metal carbonyls on Ni(100) surfaces in connection with chemical vapor deposition processes. J. Vac. Sci. Technol. A Vac. Surf. Films 14, 415 (1996)

    Article  ADS  Google Scholar 

  64. M. Gavagnin, H.D. Wanzenboeck, D. Belić, E. Bertagnolli, Synthesis of individually tuned nanomagnets for nanomagnet logic by direct write focused electron beam induced deposition. ACS Nano 7, 777 (2013)

    Article  Google Scholar 

  65. T. Lukasczyk, M. Schirmer, H.-P. Steinrück, H. Marbach, Generation of clean iron structures by electron-beam-induced deposition and selective catalytic decomposition of iron pentacarbonyl on Rh(110). Langmuir 25, 11930 (2009)

    Article  Google Scholar 

  66. N. Miyata, H. Watanabe, M. Ichikawa, Thermal decomposition of an ultrathin si oxide layer around a Si(001)-(2x1) window. Phys. Rev. Lett. 84, 1043 (2000)

    Article  ADS  Google Scholar 

  67. G. Hollinger, F.J. Himpsel, Probing the transition layer at the SiO2–Si interface using core level photoemission. Appl. Phys. Lett. 44, 93 (1984)

    Article  ADS  Google Scholar 

  68. T. Block, H. Pfnür, Generation of ultrasmall nanostructures in oxide layers assisted by self-organization. J. Appl. Phys. 103, 064303 (2008)

    Article  ADS  Google Scholar 

  69. P.J. Feibelman, M.L. Knotek, Reinterpretation of electron-stimulated desorption data from chemisorption systems. Phys. Rev. B 18, 6531 (1978)

    Article  ADS  Google Scholar 

  70. M.L. Knotek, P.J. Feibelman, Ion desorption by core-hole Auger decay. Phys. Rev. Lett. 40, 964 (1978)

    Article  ADS  Google Scholar 

  71. M.L. Knotek, J.E. Houston, Application of Auger and characteristic loss spectroscopies to the study of the electronic structure of Ti and TiO2. Phys. Rev. B 15, 4580 (1977)

    Article  ADS  Google Scholar 

  72. O. Dulub et al., Electron-induced oxygen desorption from the TiO2(011)-2 × 1 surface leads to self-organized vacancies. Science 317, 1052 (2007)

    Article  ADS  Google Scholar 

  73. C.L. Pang et al., Tailored TiO2(110) surfaces and their reactivity. Nanotechnology 17, 5397 (2006)

    Article  ADS  Google Scholar 

  74. C.M. Yim, C.L. Pang, G. Thornton, Oxygen vacancy origin of the surface band-gap state of TiO2(110). Phys. Rev. Lett. 104, 036806 (2010)

    Article  ADS  Google Scholar 

  75. R. Córdoba, J. Sesé, M.R. Ibarra, J.M. De Teresa, Autocatalytic growth of Co on pure Co surfaces using Co2(CO)8 precursor. Appl. Surf. Sci. 263, 242 (2012)

    Article  ADS  Google Scholar 

  76. S. Ditze et al., Towards the engineering of molecular nanostructures: local anchoring and functionalization of porphyrins on model-templates. Nanotechnology 24, 115305 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was funded by DFG through grant MA 4246/1-2, research unit FOR 1878/funCOS and the Excellence Cluster “Engineering of Advanced Materials” granted to the FAU Erlangen-Nürnberg. I am very grateful for the pleasant and fruitful collaboration with my former and present coworkers and students: F. Vollnhals, M. Stark, Dr. S. Ditze, Dr. T. Lukasczyk, Dr. M.-M. Walz, Dr. M. Schirmer, M. Drost, F. Tu, Dr. Esther Carrasco, Dr. F. Porrati, Prof. M. Huth, Prof. O. Diwald, Prof. G. Thornton and Prof. H.-P. Steinrück. This work was conducted within the framework of the COST Action CM1301 (CELINA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubertus Marbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marbach, H. Electron beam induced surface activation: a method for the lithographic fabrication of nanostructures via catalytic processes. Appl. Phys. A 117, 987–995 (2014). https://doi.org/10.1007/s00339-014-8578-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8578-x

Keywords

Navigation