Advertisement

Applied Physics A

, Volume 117, Issue 4, pp 1631–1644 | Cite as

Understanding the electron-stimulated surface reactions of organometallic complexes to enable design of precursors for electron beam-induced deposition

  • Julie A. Spencer
  • Samantha G. Rosenberg
  • Michael Barclay
  • Yung-Chien Wu
  • Lisa McElwee-White
  • D. Howard Fairbrother
Article

Abstract

Standard practice in electron beam-induced deposition (EBID) is to use precursors designed for thermal processes, such as chemical vapor deposition (CVD). However, organometallic precursors that yield pure metal deposits in CVD often create EBID deposits with high levels of organic contamination. This contamination negatively impacts the deposit’s properties (e.g., by increasing resistivity or decreasing catalytic activity) and severely limits the range of potential applications for metal-containing EBID nanostructures. To provide the information needed for the rational design of precursors specifically for EBID, we have employed an ultra-high vacuum (UHV) surface science approach to identify the elementary reactions of organometallic precursors during EBID. These UHV studies have demonstrated that the initial electron-induced deposition of the surface-bound organometallic precursors proceeds through desorption of one or more of the ligands present in the parent compound. In specific cases, this deposition step has been shown to proceed via dissociative electron attachment, involving low-energy secondary electrons generated by the interaction of the primary beam with the substrate. Electron beam processing of the surface-bound species produced in the initial deposition event usually causes decomposition of the residual ligands, creating nonvolatile fragments. This process is believed to be responsible for a significant fraction of the organic contaminants typically observed in EBID nanostructures. A few ligands (e.g., halogens) can, however, desorb during electron beam processing while other ligands (e.g., PF3, CO) can thermally desorb if elevated substrate temperatures are used during deposition. Using these general guidelines for reactivity, we propose some design strategies for EBID precursors. The ultimate goal is to minimize organic contamination and thus overcome the key bottleneck for fabrication of relatively pure EBID nanostructures.

Keywords

Electron Irradiation Organometallic Complex Organic Contamination Dissociative Electron Attachment Electron Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.J. Randolph, J.D. Fowlkes, P.D. Rack, Crit. Rev. Solid State Mater. Sci. 31, 55 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    I. Utke, P. Hoffman, J. Melngailis, J. Vac. Sci. Technol., B 26(4), 1197 (2008)CrossRefGoogle Scholar
  3. 3.
    W.F. van Dorp, C.W. Hagen, J. Appl. Phys. 104, 081301 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M. Huth, F. Porrati, C. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, G. Fantner, Beilstein J. Nanotechnol. 3, 597 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Frey, C. Lehrer, H. Ryssel, Appl. Phys. A Mater. Sci. Process. 76(7), 1017 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    J.Y. Igaki, K. Kanda, Y. Haruyama, M. Ishida, Y. Ochiai, J.I. Fujita, T. Kaito, S. Matsui, Microelectron. Eng. 83, 1225 (2006)CrossRefGoogle Scholar
  7. 7.
    T. Fujii, K. Iwasaki, M. Muekane, T. Takeuchi, M. Hasuda, Y. Asahata, M. Kyohara, T. Kogure, Y. Kijima, T. Kaito, J. Micromech. Microeng. 15(10), S286 (2005)CrossRefGoogle Scholar
  8. 8.
    J.N. Helbert, Handbook of VLSI Microlithography Principles Tools Technology and Applications, 2nd edn. (Noyes /William Andrew Publishing, Norwich, New York 2001)Google Scholar
  9. 9.
    V. Bakshi, EUV Lithography (SPIE/Wiley Interscience, New York, 2009)Google Scholar
  10. 10.
    W.F. van Dorp, I. Lazic, A. Beyer, A. Gölzhāuser, J.B. Wagner, T.W. Hansen, C.W. Hagen, Nanotechnology 22(11), 115303 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    J. Brown, P. Kocher, C.S. Ramanujan, D.N. Sharp, K. Torimitsu, J.S. Ryan, Ultramicroscopy 133, 62 (2013)CrossRefGoogle Scholar
  12. 12.
    J.C. Van Oven, F. Berwald, K.K. Berggen, P. Kruit, C.W. Hagen, J. Vac. Sci. Technol., B 29(6), 06F305 (2011)Google Scholar
  13. 13.
    A. Fernandez-Pacheco, L. Serrano-Ramón, J.M. Michalik, M.R. Ibarra, J.M. De Teresa, L. O’Brien, D. Petit, J. Lee, R.P. Coburn, Sci. Rep. 3, 1492 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    A. Perentes, P. Hoffmann, Chem. Vap. Depos. 13, 176 (2007)CrossRefGoogle Scholar
  15. 15.
    K. Edinger, H. Becht, J. Bihr, V. Boegli, M. Budach, T. Hofmann, H.W.P. Koops, P. Kuschnerus, J. Oster, P. Spies, B. Weyrauch, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 22(6), 2902 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    T. Liang, E. Frendberg, B. Lieberman, A. Stivers, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 23(6), 3101 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    C.Th.H. Heerkens, M.J. Kamerbeek, W.F. van Dorp, C.W. Hagen, J. Hoekstra, Microelectron. Eng. 86, 961 (2009)CrossRefGoogle Scholar
  18. 18.
    B. Hubner, H.W.P. Koops, H. Pagnia, N. Sotnik, J. Urban, M. Weber, Ultramicroscopy 42–44, 1519 (1992)CrossRefGoogle Scholar
  19. 19.
    I.-C. Chen, L.-H. Chen, C. Orme, A. Quist, R. Lal, S. Jin, Nanotechnology 17, 4322 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    S. Graells, R. Alcubilla, G. Badenes, R. Quidant, Appl. Phys. Lett. 91, 121112 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    A. Weber-Bargioni, A. Schwartzberg, M. Schmidt, B. Harteneck, D.F. Ogletree, P.J. Schuck, S. Cabrini, Nanotechnology 21, 065301 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    H.W.P. Koops, O.E. Hoinkis, M.E.W. Honsberg, R. Schmidt, R. Blum, G. Bottger, A. Kuligk, C. Liguda, M. Eich, Microelectron. Eng. 57–58, 995 (2001)CrossRefGoogle Scholar
  23. 23.
    H.W. Koops, A. Kaya, M. Weber, J. Vac. Sci. Technol., B 13(6), 2400 (1995)CrossRefGoogle Scholar
  24. 24.
    A. Botman, M. Hesselberth, J.J.L. Mulders, Microelectron. Eng. 85, 1139 (2008)CrossRefGoogle Scholar
  25. 25.
    K.L. Klein, S.J. Randolph, J.D. Fowlkes, L.F. Allard, H.M. Meyer III, M.L. Simpson, P.D. Rack, Nanotechnology 19, 345705 (2008)CrossRefGoogle Scholar
  26. 26.
    A. Botman, M. Hesselberth, J.J.L. Mulders, J. Vac. Sci. Technol., B 26(6), 2464 (2008)CrossRefGoogle Scholar
  27. 27.
    P.D. Tran, P. Doppelt, J. Electrochem. Soc. 154(10), D520 (2007)CrossRefGoogle Scholar
  28. 28.
    T. Brintlinger, M.S. Fuhrer, J. Melngailis, I. Utke, T. Bret, A. Perentes, P. Hoffmann, M. Abourida, P. Doppelt, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas. Phenom. 23(6), 3174 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    L. McElwee-White, Dalton Trans., 5327 (2006)Google Scholar
  30. 30.
    L. McElwee-White, J. Koller, D. Kim, T.J. Anderson, ECS Trans. 25(8), 161 (2009)CrossRefGoogle Scholar
  31. 31.
    W.F. van Dorp, J.D. Wnuk, J.M. Gorham, D.H. Fairbrother, T.E. Madey, C.W. Hagen, J. Appl. Phys. 106, 074903 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    J.D. Wnuk, J.M. Gorham, S.G. Rosenberg, W.F. van Dorp, T.E. Madey, C.W. Hagen, D.H. Fairbrother, J. Phys. Chem. C 113, 2487 (2009)CrossRefGoogle Scholar
  33. 33.
    J.D. Wnuk, J.M. Gorham, S.G. Rosenberg, W.F. van Dorp, T.E. Madey, C.W. Hagen, D.H. Fairbrother, J. Appl. Phys. 107, 5–054301 (2010)CrossRefGoogle Scholar
  34. 34.
    J.D. Wnuk, S.G. Rosenberg, J.M. Gorham, W.F. van Dorp, C.W. Hagen, D.H. Fairbrother, Surf. Sci. 605, 3–4–257 (2011)CrossRefGoogle Scholar
  35. 35.
    S.G. Rosenberg, K. Landheer, C.W. Hagen, D.H. Fairbrother, J. Vac. Sci. Technol., B 30, 051805 (2012)CrossRefGoogle Scholar
  36. 36.
    S.G. Rosenberg, M. Barclay, D.H. Fairbrother, Phys. Chem. Chem. Phys. 15(11), 4002 (2013)CrossRefGoogle Scholar
  37. 37.
    S.G. Rosenberg, M. Barclay, D.H. Fairbrother, J. Phys. Chem. C 117(31), 16053 (2013)CrossRefGoogle Scholar
  38. 38.
    K. Landheer, S.G. Rosenberg, L. Bernau, P. Swiderek, I. Utke, C.W. Hagen, D.H. Fairbrother, J. Phys. Chem. C 115(35), 17452 (2011)CrossRefGoogle Scholar
  39. 39.
    A. Perentes, G. Sinicco, G. Boero, B. Dwir, P. Hoffmann, J. Vac. Sci. Technol., B 25, 2228 (2007)CrossRefGoogle Scholar
  40. 40.
    M.H. Ervin, B.M. Nichols, J. Vac. Sci. Technol., B 27(6), 2982 (2009)CrossRefGoogle Scholar
  41. 41.
    A. Fernandez-Pacheco, J.M. De Teresa, R. Cordoba, M.R. Ibarra, J. Phys. D Appl. Phys. 42, 055005 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    A. Fernandez-Pacheco, J.M. De Teresa, R. Cordoba, M.R. Ibarra, D. Petit, D.E. Read, L. O’Brien, E.R. Lewis, H.T. Zeng, R.P. Cowburn, Appl. Phys. Lett. 94, 19–192501 (2009)CrossRefGoogle Scholar
  43. 43.
    M. Gabureac, L. Bernau, I. Utke, G. Boero, Nanotechnology 21(11), 115501 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    G.C. Gazzadi, H. Mulders, P. Trompenaars, A. Ghirri, M. Affronte, V. Grillo, S. Frabboni, J. Phys. Chem. C 115(40), 19606 (2011)CrossRefGoogle Scholar
  45. 45.
    G.C. Gazzadi, J.J.L. Mulders, P. Trompenaars, A. Ghirri, A. Rota, M. Affronte, S. Frabboni, Microelectron. Eng. 88(8), 1955 (2011)CrossRefGoogle Scholar
  46. 46.
    I. Sychugov, Y. Nakayama, K. Mitsuishi, J. Phys. Chem. C 113, 21516 (2009)CrossRefGoogle Scholar
  47. 47.
    W.F. van Dorp, B. van Someren, C.W. Hagen, P. Kruit, P.A. Crozier, J. Vac. Sci. Technol., B 24(2), 618 (2006)CrossRefGoogle Scholar
  48. 48.
    W.F. van Dorp, C.W. Hagen, P.A. Crozier, P. Kruit, Nanotechnology 19, 225305 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    F. Porrati, R. Sachser, C.H. Schwalb, A.S. Frangakis, M. Huth, J. Appl. Phys. 109, 063715/1 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    S. Frabboni, G.C. Gazzadi, L. Felisari, A. Spessot, Appl. Phys. Lett. 88, 213116 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    S. Frabboni, G.C. Gazzadi, A. Spessot, Phys. E 37, 265 (2007)CrossRefGoogle Scholar
  52. 52.
    P.D. Rack, S. Randolph, Y. Deng, J. Fowlkes, Y. Choi, D.C. Joy, Appl. Phys. Lett. 82, 14–2326 (2003)CrossRefGoogle Scholar
  53. 53.
    S. Engmann, M. Stano, Š. Matejčík, O. Ingólfsson, Phys. Chem. Chem. Phys. 14, 14611 (2012)Google Scholar
  54. 54.
    J. Barry, M.H. Ervin, J. Molstad, A. Wickenden, T. Brintlinger, P. Hoffman, J. Meingailis, J. Vac. Sci. Technol., B 24(6), 3165 (2006)CrossRefGoogle Scholar
  55. 55.
    A. Botman, C.W. Hagen, J. Li, B.L. Thiel, K.A. Dunn, J.J.L. Mulders, S.J. Randolph, M. Toth, J. Vac. Sci. Technol., B 27(6), 2759 (2009)CrossRefGoogle Scholar
  56. 56.
    M. Takeguchi, M. Shimojo, K. Furuya, Appl. Phys. A Mater. Sci. Process. 93, 439 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    S. Wang, Y.-M. Sun, Q. Wang, J.M. White, J. Vac. Sci. Technol., B 22(4), 1803 (2004)CrossRefGoogle Scholar
  58. 58.
    O. May, D. Kubala, M. Allan, Phys. Chem. Chem. Phys. 14, 2979 (2012)CrossRefGoogle Scholar
  59. 59.
    M.H. Ervin, D. Chang, B. Nichols, A. Wickenden, J. Barry, J. Melngailis, J. Vac. Sci. Technol., B 25(6), 2250 (2007)CrossRefGoogle Scholar
  60. 60.
    J.J.L. Mulders, L.M. Belova, A. Riazanova, Nanotechnology 22(5), 055302/1 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    J.J.L. Mulders, J.M. Veerhoek, E.G.T. Bosch, P.H.F. Trompenaars, J. Phys. D Appl. Phys. 45, 47–475301/1 (2012)CrossRefGoogle Scholar
  62. 62.
    W. Fuss, M. Ruehe, Z. Naturforsch., B: Chem. Sci. 47, 591 (1992)Google Scholar
  63. 63.
    F. Schödel, M. Bolte, M. Wagner, H.-W. Lerner, Z. Anorg. Allg. Chem. 632, 4–652 (2006)CrossRefGoogle Scholar
  64. 64.
    D. Woska, A. Prock, W.P. Giering, Organometallics 19, 4629 (2000)CrossRefGoogle Scholar
  65. 65.
    A. Graefe, T. Kruck, J. Organomet. Chem. 506, 31 (1996)CrossRefGoogle Scholar
  66. 66.
    R. Heathcote, J.A.S. Howell, N. Jennings, D. Cartlidge, L. Cobden, S. Coles, M. Hursthouse, Dalton Trans. 13, 1309 (2007)CrossRefGoogle Scholar
  67. 67.
    F.G. Mann, A.F. Wells, D. Purdie, J. Chem. Soc. (Resumed) 0, 1828 (1937)CrossRefGoogle Scholar
  68. 68.
    D.B. Dell’Amico, L. Labella, J. Organomet. Chem. 593–594, 427 (2000)Google Scholar
  69. 69.
    B. von Ahsen, R. Wartchow, H. Willner, V. Jonas, F. Aubke, Inorg. Chem. 39, 4424 (2000)CrossRefGoogle Scholar
  70. 70.
    J.R. Vargas Garcia, T. Goto, Mater. Trans. 44, 9–1717 (2003)Google Scholar
  71. 71.
    R.M. Guerrero, J.R. Vargas Garcia, V. Santes, E. Gomez, J. Alloys Compd. 434–435, 701 (2007)CrossRefGoogle Scholar
  72. 72.
    M.J. Rand, J. Electrochem. Soc. 120, 5–686 (1973)Google Scholar
  73. 73.
    F. Bagnoli, D.B. Dell’Amico, F. Calderazzo, U. Englert, F. Marchetti, A. Merigo, S. Ramello, J. Organomet. Chem. 622, 180 (2001)CrossRefGoogle Scholar
  74. 74.
    R. Friedemann, K. Seppelt, Eur. J. Inorg. Chem. 2013, 1197 (2013)CrossRefGoogle Scholar
  75. 75.
    J. Browning, P. L. Goggin, R. J. Goodfellow, J. Chem. Res. (S), 328 (1978)Google Scholar
  76. 76.
    S.G. Rosenberg, M. Barclay, D.H. Fairbrother, ACS Appl. Mater. Interfaces 6, 8590–8601 (2014)CrossRefGoogle Scholar
  77. 77.
    J.F. Friedman, T.M. Miller, J.K. Friedman-Schaffer, A.A. Viggiano, G.K. Rekha, A.E. Stevens, J. Chem. Phys. 104303, 128 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Julie A. Spencer
    • 2
  • Samantha G. Rosenberg
    • 2
  • Michael Barclay
    • 2
  • Yung-Chien Wu
    • 1
  • Lisa McElwee-White
    • 1
  • D. Howard Fairbrother
    • 2
  1. 1.Department of ChemistryUniversity of FloridaGainesvilleUSA
  2. 2.Department of ChemistryJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations