Skip to main content
Log in

Buckling behaviors of open-tip carbon nanocones at elevated temperatures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper used molecular dynamics simulations to investigate buckling behaviors of open-tip carbon nanocones (CNCs) at elevated temperatures ranging from 300 to 700 K. Influences of cone height and apex angle on the buckling behaviors were examined. Some interesting findings, especially on the change in buckling mode shapes of the CNCs, were observed in the study. For the CNCs having an apex angle of 19.2°, the one with a lower cone height exhibited a shrinking/swelling buckling mode shape even at the higher temperature 700 K. However, as the cone height increased, the CNC displayed a deflective buckling mode shape at 300 K, but changed to a shrinking/swelling buckling mode shape when the temperature grew to 500 K. Regarding the influences of apex angle, the CNCs presented a deflective buckling mode shape even at 700 K as the apex angle expanded. This is opposite to the shrinking/swelling buckling mode shape of the CNC having the smallest apex angle of 19.2°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Ge, K. Sattler, Observation of fullerene cones. Chem. Phys. Lett. 220, 192–196 (1994)

    Article  ADS  Google Scholar 

  2. A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdhl, S. Lynum, T.W. Ebbesen, Graphitic cones and the nucleation of curved carbon surfaces. Nature 388, 451–454 (1997)

    Article  ADS  Google Scholar 

  3. S.N. Naess, A. Elgsaeter, G. Helgesen, K.D. Knudsen, Carbon nanocones: wall structure and morphology. Sci. Technol. Adv. Mater. 10, 065002 (2009)

    Article  Google Scholar 

  4. S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, K. Taskahashi, Nanoaggregates of single-walled graphitic carbon nanohorns. Chem. Phys. Lett. 309, 165–170 (1999)

    Article  ADS  Google Scholar 

  5. Y. Gogotsi, S. Dimovski, J.A. Libera, Conical crystals of graphite. Carbon 40, 2263–2267 (2002)

    Article  Google Scholar 

  6. G. Zhang, X. Jiang, E. Wang, Tubular graphite cones. Science 300, 472–474 (2003)

    Article  ADS  Google Scholar 

  7. Z.L. Tsakadze, I. Levchenko, K. Ostrikov, X. Su, Plasma-assisted self-organized growth of uniform carbon nanocone arrays. Carbon 45, 2022–2030 (2007)

    Article  Google Scholar 

  8. I. Levchenko, K. Ostrikov, J.D. Long, S. Xu, Plasma-assisted self-sharpening of platelet-structured single-crystalline carbon nanocones. Appl. Phys. Lett. 91, 113115 (2007)

    Article  ADS  Google Scholar 

  9. H. Terrones, T. Hayashi, M. Muñoz-Navia, M. Terrones, Y.A. Kim, N. Grobert, R. Kamalakaran, J. Dorantes-Davila, R. Escudero, M.S. Dresselhaus, M. Endo, Graphitic cones in palladium catalysed carbon nanofibers. Chem. Phys. Lett. 343, 241–250 (2001)

    Article  ADS  Google Scholar 

  10. M. Endo, Y.A. Kim, T. Hayashi, Y. Fukai, K. Oshida, M. Terrones, T. Yanagisawa, S. Higaki, M.S. Dresselhaus, Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl. Phys. Lett. 80, 1267 (2002)

    Article  ADS  Google Scholar 

  11. B. Ekşioğlu, A. Nadarajah, Structural analysis of conical carbon nanofibers. Carbon 44, 360–373 (2006)

    Article  Google Scholar 

  12. I.C. Chen, L.H. Chen, A. Gapin, S. Jin, L. Yuan, S.H. Liou, Iron–platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging. Nanotechnology 19, 075501 (2008)

    Article  ADS  Google Scholar 

  13. J. Sripirom, S. Noor, U. Koehler, A. Schulte, Easily made and handled carbon nanocones for scanning tunneling microscopy and electroanalysis. Carbon 49, 2402–2412 (2011)

    Article  Google Scholar 

  14. S.S. Yu, W.T. Zheng, Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. Nanoscale 2, 1069–1082 (2010)

    Article  ADS  Google Scholar 

  15. J.Y. Hsieh, C. Chen, J.L. Chen, C.I. Chen, C.C. Hwang, The nanoindentation of a copper substrate by single-walled carbon nanocone tips: a molecular dynamics study. Nanotechnology 20, 095709 (2009)

    Article  ADS  Google Scholar 

  16. O.O. Adisa, B.J. Cox, J.M. Hill, Open carbon nanocones as candidates for gas storage. J. Chem. Phys. C 115, 24528–24533 (2011)

    Article  Google Scholar 

  17. M.L. Liao, A study on hydrogen adsorption behaviors of open-tip carbon nanocones. J. Nanopart. Res. 14, 837 (2012)

    Article  Google Scholar 

  18. X. Yu, S. Raaen, The influence of potassium doping on hydrogen adsorption on carbon nanocone material studied by thermal desorption and photoemission. Appl. Surf. Sci. 270, 364–369 (2013)

    Article  ADS  Google Scholar 

  19. N. Yang, G. Zhang, B. Li, Carbon nanocone: a promising thermal rectifier. Appl. Phys. Lett. 93, 243111 (2008)

    Article  ADS  Google Scholar 

  20. S.P. Jordan, V.H. Crespi, Theory of carbon nanocones: mechanical chiral inversion of a micron-scale three-dimensional object. Phys. Rev. Lett. 93, 255504 (2004)

    Article  ADS  Google Scholar 

  21. P.C. Tsai, T.H. Fang, A molecular dynamics study of the nucleation, thermal stability and nanomechanics of carbon nanocones. Nanotechnology 18, 105702 (2007)

    Article  ADS  Google Scholar 

  22. K.M. Liew, J.X. Wei, X.Q. He, Carbon nanocones under compression: buckling and post-buckling behaviors. Phys. Rev. B 75, 195435 (2007)

    Article  ADS  Google Scholar 

  23. J.X. Wei, K.M. Liew, X.Q. He, Mechanical properties of carbon nanocones. Appl. Phys. Lett. 91, 261906 (2007)

    Article  ADS  Google Scholar 

  24. M. Yudasaka, S. Iijima, V.H. Crespi, Single-wall carbon nanohorns and nanocones. Topics Appl. Phys. 111, 605–629 (2008)

    Article  Google Scholar 

  25. M.L. Liao, C.H. Cheng, Y.P. Lin, Tensile and compressive behaviors of open-tip carbon nanocones under axial strains. J. Mater. Res. 26, 1577–1584 (2011)

    Article  ADS  Google Scholar 

  26. M.M.S. Fakhrabadi, N. Khani, R. Omidvar, A. Rastgoo, Investigation of elastic and buckling properties of carbon nanocones using molecular mechanics approach. Comput. Mater. Sci. 61, 248–256 (2012)

    Article  Google Scholar 

  27. M.M.S. Fakhrabadi, B. Dadashzadeh, V. Norouzifard, A. Allahverdizadeh, Application of molecular dynamics in mechanical characterization of carbon nanocones. J. Comput. Theor. Nanosci. 10, 1921–1927 (2013)

    Article  Google Scholar 

  28. J.W. Yan, K.M. Liew, L.H. He, A mesh-free computational framework for predicting buckling behaviors of single-walled carbon nanocones under axial compression based on the moving Kriging interpolation. Comput. Methods Appl. Mech. Eng. 247, 103–112 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  29. J.W. Yan, K.M. Liew, L.H. He, Buckling and post-buckling of single-wall carbon nanocones upon bending. Compos. Struct. 106, 793–798 (2013)

    Article  Google Scholar 

  30. Y. Tian, R. Wei, V. Eichhorn, S. Fatikow, B. Shirinzadeh, D. Zhang, Mechanical properties of boron nitride nanocones. J. Appl. Phys. 111, 104316 (2012)

    Article  ADS  Google Scholar 

  31. J. Tersoff, New empirical model for the structural properties of silicon. Phys. Rev. Lett. 56, 632–635 (1986)

    Article  ADS  Google Scholar 

  32. J. Tersoff, Modeling solid-state chemistry: interatomic potentials for multi-component systems. Phys. Rev. B 39, 5566–5568 (1989)

    Article  ADS  Google Scholar 

  33. D.C. Rapaport, The Art of Molecular Dynamics Simulations (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  34. J.M. Haile, Molecular Dynamics Simulation: Elementary Method (Wiley, New York, 1997)

    Google Scholar 

  35. J.M. Gere, B.J. Goodno, Mechanics of Materials (Cengage Learning, USA, 2013)

    Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the support provided to this research by the Ministry of Science and Technology of Taiwan under Project Grant No. NSC 102-2221-E-344-001. The author also thanks the editor and referees for their helpful recommendations to make this paper more readable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Liang Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, ML. Buckling behaviors of open-tip carbon nanocones at elevated temperatures. Appl. Phys. A 117, 1109–1118 (2014). https://doi.org/10.1007/s00339-014-8567-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8567-0

Keywords

Navigation