Skip to main content
Log in

Radial buckling of multi-walled carbon nanotubes under hydrostatic pressure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Radial buckling stresses of carbon nanotubes (CNTs) need to be studied in high-pressure resonance Raman scattering spectrum. In this work, the closed-form expression of the critical buckling stress of multi-walled carbon nanotubes (MWCNTs) under hydrostatic pressure is derived that can be conveniently employed. Using the derived formulae, the critical buckling stresses of single-walled carbon nanotubes and double-walled carbon nanotubes with different diameters are calculated. The results are in good agreement with other reported literatures. In addition, the critical buckling stresses of each layer of a quintuple-walled CNT in different buckling modes are predicted, showing that the buckling instability can occur not only in the outermost rolled layer, but also in other rolled layer of MWCNTs by considering different diameters and buckling modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. S. Iijima, T. Ichihashi, Nature 363, 603 (1993)

    Article  ADS  Google Scholar 

  3. S. Reich, C. Thomsen, J. Maultzsch, Carbon nanotubes: basic concepts and physical properties (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004)

    Google Scholar 

  4. I. Loa, J. Raman Spectrosc. 34, 611 (2003)

    Article  ADS  Google Scholar 

  5. U.D. Venkateswaran, A.M. Rao, E. Richter, M. Menon, A. Rinzler, R.E. Smalley, P.C. Ecklund, Phys. Rev. B 59(10), 928 (1999)

    Google Scholar 

  6. P. Puech, A. Ghandour, A. Sapelkin, C. Tinguely, E. Flahaut, D.J. Dunstan, W. Basca, Phys. Rev. B 78, 045413 (2008)

    Article  ADS  Google Scholar 

  7. L. Alvarez, J.L. Bantignies, R. Le Parc, R. Aznar, J.L. Sauvajol, A. Merlen, D. Machon, A. San Miguel, Phys. Rev. B 82, 205403 (2010)

    Article  ADS  Google Scholar 

  8. A.L. Aguiar, A. San-Miguel, E.B. Barros, M. Kalbáč, D. Machon, Y.A. Kim, H. Muramatsu, M. Endo, A.G. Souza Filho, Phys. Rev. B 86, 195410 (2012)

    Article  ADS  Google Scholar 

  9. J. Tang, L.C. Qin, T. Sasaki, M. Yudasaka, A. Matsushita, S. Iijima, Phys. Rev. Lett. 85, 1887 (2000)

    Article  ADS  Google Scholar 

  10. J.F. Waters, L. Riester, M. Jouzi, P.R. Guduru, J.M. Xu, Appl. Phys. Lett. 85, 1787 (2004)

    Article  ADS  Google Scholar 

  11. Y.R. Jeng, P.C. Tsai, T.H. Fang, Appl. Phys. Lett. 90, 161913 (2007)

    Article  ADS  Google Scholar 

  12. H.W. Yap, R.S. Lakes, R.W. Carpick, Nano Lett. 7, 1149 (2007)

    Article  ADS  Google Scholar 

  13. P.R. Guduru, Z. Xia, Exp. Mech. 47, 153 (2007)

    Article  Google Scholar 

  14. D.Y. Khang, J. Xiao, C. Kocabas, S. MacLaren, T. Banks, H. Jiang, Y.Y. Huang, J.A. Rogers, Nano Lett. 8, 124 (2008)

    Article  ADS  Google Scholar 

  15. P.C. Tsai, Y.R. Jeng, Y.X. Huang, K.T. Wu, Appl. Phys. Lett. 103, 053119 (2013)

    Article  ADS  Google Scholar 

  16. Q. Wang, K.M. Liew, X.Q. He, Y. Xiang, Appl. Phys. Lett. 91, 093128 (2007)

    Article  ADS  Google Scholar 

  17. Q. Wang, K.M. Liew, V.K. Varadan, Appl. Phys. Lett. 92, 043120 (2008)

    Article  ADS  Google Scholar 

  18. T. Natsuki, N. Fujita, Q.Q. Ni, M. Endo, J. Appl. Phys. 106, 084310 (2009)

    Article  ADS  Google Scholar 

  19. J.X. Shi, T. Natsuki, X.W. Lei, Q.Q. Ni, ASME J. Nanotechnol. Eng. Med. 3, 020903 (2012)

    Article  Google Scholar 

  20. S.C. Pradhan, G.K. Reddy, Comp. Mater. Sci. 50, 1052 (2011)

    Article  Google Scholar 

  21. X. Huang, W. Liang, S. Zhang, Nanoscale Res. Lett. 6, 53 (2011)

    Article  ADS  Google Scholar 

  22. B. Motevalli, A. Montazeri, J.Z. Liu, H. Rafii-Tabar, Comp. Mater. Sci. 79, 619 (2013)

    Article  Google Scholar 

  23. D.D.T.K. Kulathunga, K.K. Ang, Comp. Mater. Sci. 81, 233 (2014)

    Article  Google Scholar 

  24. D. Qian, G.J. Wagner, W.K. Liu, M.F. Yu, R.S. Ruoff, Appl. Mech. Rev. 55, 495 (2002)

    Article  ADS  Google Scholar 

  25. R. Ansari, R. Gholami, S. Sahmani, Appl. Phys. A 113, 145 (2013)

    Article  ADS  Google Scholar 

  26. H. Shima, Materials 5, 47 (2012)

    Article  ADS  Google Scholar 

  27. E. Ventsel, T. Krauthammer, Thin plates and shells (Marcel Dekker Inc, New York, 2001)

    Book  Google Scholar 

  28. X.Q. He, S. Kitipornchai, K.M. Liew, J. Mech. Phys. Solids 53, 303 (2005)

    Article  MATH  ADS  Google Scholar 

  29. R. Saito, R. Matsuo, T. Kimura, G. Dresselhaus, M.S. Dresselhaus, Chem. Phys. Lett. 348, 187 (2001)

    Article  ADS  Google Scholar 

  30. S. Timoshenko, S. Woinowsky-Keieger, Theory of plates and shells (McGraw-Hill Book Co., Singapore, 1959)

    Google Scholar 

  31. X. Wang, G. Lu, Y.J. Lu, Int. J. Solids Struct. 44, 336 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiaki Natsuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, JX., Natsuki, T. & Ni, QQ. Radial buckling of multi-walled carbon nanotubes under hydrostatic pressure. Appl. Phys. A 117, 1103–1108 (2014). https://doi.org/10.1007/s00339-014-8564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8564-3

Keywords

Navigation