Skip to main content
Log in

Surface-enhanced Raman scattering of 4-mercaptobenzoic acid and hemoglobin adsorbed on self-assembled Ag monolayer films with different shapes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Polyvinylpyrrolidone (PVP)-protected silver nanostructures of various shapes, including nanocubes, nanospheres, and hybrid shapes with nanospheres and nanorods, on the surface of glass or Si substrates (PVP-Ag films) are prepared by using electrostatic self-assembly. With 4-mercaptobenzoic acid (4-MBA) as a probe molecule, it is demonstrated that the PVP-protected silver nanocubes films (PVP-Ag NCs) have better surface-enhanced Raman scattering (SERS) activity with an order of magnitude larger enhancement factors (EF) than the PVP-protected silver nanospheres films and the PVP-protected silver hybrid shapes films, which is confirmed by our numerical simulations. The EF of 4-MBA on the PVP-Ag NCs film are up to ~5.38 × 106, and the detection limit is at least down to ~10−8 M. The uniformity and reproducibility of the SERS signals on PVP-Ag NCs film are tested by point-to-point and batch-to-batch measurements. Meanwhile, the PVP-Ag films are also shown to be an excellent SERS substrate with good biocompatibility for hemoglobin detection. It is shown that the PVP-Ag NCs films can be used as excellent SERS substrate with good activity, uniformity, reproducibility, and biocompatibility and are promising for a myriad of chemical and biochemical sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Chem. Phys. Lett. 26, 163–166 (1974)

    Article  ADS  Google Scholar 

  2. S.M. Nie, S.R. Emery, Science 275, 1102–1106 (1997)

    Article  Google Scholar 

  3. Z.Q. Tian, B. Ren, D.Y. Wu, J. Phys. Chem. B 106, 9463–9483 (2002)

    Article  Google Scholar 

  4. B.N.J. Persson, K. Zhao, Z.Y. Zhang, Phys. Rev. Lett. 96, 207401–207404 (2006)

    Article  ADS  Google Scholar 

  5. S.J. Lee, A.R. Morrill, M. Moskovits, J. Am. Chem. Soc. 128, 2200–2201 (2006)

    Article  Google Scholar 

  6. J.X. Fang, Y. Yi, B.J. Ding, X.P. Song, Appl. Phys. Lett. 92, 131115–131117 (2008)

    Article  ADS  Google Scholar 

  7. L. Lu, K. Ai, Y. Ozaki, Langmuir 24, 1058–1063 (2008)

    Article  Google Scholar 

  8. R.M. Liu, Y. Xiong, W.Y. Tang, Y. Guo, X.H. Yan, M.Z. Si, J. Raman Spectrosc. 44, 362–369 (2013)

    Article  ADS  Google Scholar 

  9. R.M. Liu, S.M. Zhu, M.Z. Si, Z.Q. Liu, D.Q. Zhang, J. Raman Spectrosc. 43, 370–379 (2012)

    Article  ADS  Google Scholar 

  10. B.L. Mitchell, A.J. Patwardhan, S.M. Ngola, S. Chan, N. Sundararajan, J. Raman Spectrosc. 39, 380–388 (2008)

    Article  ADS  Google Scholar 

  11. S.Z. Nergiz, N. Gandra, M.E. Farrell, L.M. Tian, P.M. Pellegrino, S. Singamaneni, J. Mater. Chem. A 1, 6543–6549 (2013)

    Article  Google Scholar 

  12. E. Podstawka, E. Sikorska, L.M. Proniewicz, B. Lammek, Biopolymers 83, 193–203 (2006)

    Article  Google Scholar 

  13. X.H. Huang, I.H. EI-Sayed, W. Qian, M.A. EI-Sayed, J. Am. Chem. Soc. 128, 2115–2120 (2006)

    Article  Google Scholar 

  14. S. Lee, H. Chon, J. Lee, J. Ko, B.H. Chung, D.W. Lim, J. Choo, Biosens. Bioelectron. 51, 238–243 (2014)

    Article  Google Scholar 

  15. X.M. Lin, Y. Cui, Y.H. Xu, B. Ren, Z.Q. Tian, Anal. Bioanal. Chem. 394, 1729–1745 (2009)

    Article  Google Scholar 

  16. M. Moskovits, Rev. Mod. Phys. 57, 783–826 (1985)

    Article  ADS  Google Scholar 

  17. A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, J. Phys.: Condens. Matter 4, 1143–1212 (1992)

    ADS  Google Scholar 

  18. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Chem. Rev. 99, 2957–2975 (1999)

    Article  Google Scholar 

  19. C. Jing, Y. Fang, J. Colloid Interface Sci. 314, 46–51 (2007)

    Article  Google Scholar 

  20. R.G. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter, M.J. Natan, Science 267, 1629–1632 (1995)

    Article  ADS  Google Scholar 

  21. C. Noguez, J. Phys. Chem. C 111, 3806–3819 (2007)

    Article  Google Scholar 

  22. S.E. Skrabalak, L. Au, X. Li, Y. Xia, Nat. Protoc. 2, 2182–2190 (2007)

    Article  Google Scholar 

  23. A. Tao, P. Sinsermsuksakul, P. Yang, Angew. Chem. Int. Ed. 45, 4597–4601 (2006)

    Article  Google Scholar 

  24. A. Tao, P. Sinsermsuksakul, P. Yang, Nat. Nanotech. 2, 435–440 (2007)

    Article  ADS  Google Scholar 

  25. Q. Zhang, W.Y. Li, L.P. Wen, J.Y. Chen, Y.N. Xia, Chem. Eur. J. 16, 10234–10239 (2010)

    Article  Google Scholar 

  26. F. Zhou, Z.Y. Li, Y. Liu, Y. Xia, J. Phys. Chem. C 112, 20233–20240 (2008)

    Article  Google Scholar 

  27. T. Sato, D. Brown, B.F.G. Johnson, Chem. Commun. 1007–1008 (1997)

  28. K.A. Huynh, K.L. Chen, Environ. Sci. Technol. 45, 5564–5571 (2011)

    Article  ADS  Google Scholar 

  29. G. Frens, Nat. Phys. Sci. 241, 20–22 (1973)

    Article  ADS  Google Scholar 

  30. C.J. Orendorff, A. Gole, T.K. Sau, C.J. Murphy, Anal. Chem. 77, 3261–3266 (2005)

    Article  Google Scholar 

  31. Y.L. Wang, X.Q. Zou, W. Ren, W.D. Wang, E.K. Wang, J. Phys. Chem. C 111, 3259–3265 (2007)

    Article  Google Scholar 

  32. C.J. Orendorff, A. Gole, T.K. Sau, C.J. Murphy, Anal. Chem. 77, 3261–3266 (2005)

    Article  Google Scholar 

  33. W.C. Ye, Y. Chen, F. Zhou, C.M. Wang, Y.M. Li, J. Mater. Chem. 22, 18327–18334 (2012)

    Article  Google Scholar 

  34. S.Z. Hu, K.M. Smith, T.G. Spiro, J. Am. Chem. Soc. 118, 12638–12646 (1996)

    Article  Google Scholar 

  35. B.R. Wood, M. Asghari-Khiavi, E. Bailo, D. McNaughton, V. Deckert, Nano Lett. 12, 1555–1560 (2012)

    Article  ADS  Google Scholar 

  36. Y.C. Cao, R. Jin, C.A. Mirkin, Science 297, 1536–1540 (2002)

    Article  ADS  Google Scholar 

  37. R.M. Liu, M.Z. Si, Y.P. Kang, X.F. Zi, Z.Q. Liu, D.Q. Zhang, J. Collid Interf. Sci. 343, 52–57 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Grant No. 11104252), by the Ministry of Education of China (Grant No. 20114101110003), by the fund for Science & Technology innovation team of Zhengzhou (No. 112PCXTD337), by the Science and Technology Program of Henan Province (Grant No. 112102310543), by the Natural Science Foundation of Henan Educational Committee (Grant Nos. 12A140002 and 13A140693), and by the fund for Science and Technology development of Zhengzhou (Grant No. 20130825).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erjun Liang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 70 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, S., Fan, C., Wang, J. et al. Surface-enhanced Raman scattering of 4-mercaptobenzoic acid and hemoglobin adsorbed on self-assembled Ag monolayer films with different shapes. Appl. Phys. A 117, 1075–1083 (2014). https://doi.org/10.1007/s00339-014-8548-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8548-3

Keywords

Navigation