Skip to main content

Advertisement

Log in

Low-cost, solution processable carbon nanotube supercapacitors and their characterization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report ecological and low-cost carbon nanotube (CNT) supercapacitors fabricated using a simple, scalable solution processing method, where the use of a highly porous and electrically conductive active material eliminates the need for a current collector. Electrodes were fabricated on a poly(ethylene terephthalate) substrate from a printable multi-wall CNT ink, where the CNTs are solubilized in water using xylan as a dispersion agent. The dispersion method facilitates a very high concentration of CNTs in the ink. Supercapacitors were assembled using a paper separator and an aqueous NaCl electrolyte and the devices were characterized with a galvanostatic discharge method defined by an industrial standard. The capacitance of the \(2\hbox { cm}^2\) devices was \(6\hbox { mF/cm}^2\)  (2.3 F/g) and equivalent series resistance \(80\,\Omega \). Low-cost supercapacitors fabricated from safe and environmentally friendly materials have potential applications as energy storage devices in ubiquitous and autonomous intelligence as well as in disposable low-end products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R. Kötz, M. Carlen, Electrochim. Acta 45(15–16), 2483 (2000). doi:10.1016/S0013-4686(00)00354-6

    Article  Google Scholar 

  2. A.G. Pandolfo, A.F. Hollenkamp, J. Power Sour. 157(1), 11 (2006). doi:10.1016/j.jpowsour.2006.02.065

    Article  Google Scholar 

  3. P. Simon, Y. Gogotsi, Nat. Mater. 7(11), 845 (2008). doi:10.1038/nmat2297

    Article  ADS  Google Scholar 

  4. M. Lu, F. Beguin, E. Frackowiak (eds.), Supercapacitors: materials, systems and applications (Wiley, New York, 2013)

    Google Scholar 

  5. X. Li, B. Wei, Nano Energy 2(2), 159 (2013). j.nanoen.2012.09.008

    Article  Google Scholar 

  6. J. Keskinen, E. Sivonen, S. Jussila, M. Bergelin, M. Johansson, A. Vaari, M. Smolander, Electrochim. Acta 85, 302 (2012). doi:10.1016/j.electacta.2012.08.076

    Article  Google Scholar 

  7. M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett. 9(5), 1872 (2009). doi:10.1021/nl8038579

    Article  ADS  Google Scholar 

  8. A. Somov, C.C. Ho, R. Passerone, J.W. Evans, P.K. Wright, in Wireless sensor networks, proceedings of the 9th European conference, EWSN 2012, Trento, Italy, February 15–17, 2012, ed. by G.P. Picco, W. Heinzelman (Springer, 2012), pp. 212–227. doi:10.1007/978-3-642-28169-3_14

  9. F. Simjee, P.H. Chou, in Low power electronics and design, 2006. ISLPED’06. Proceedings of the 2006 international symposium on (IEEE, 2006), pp. 197–202. doi:10.1109/LPE.2006.4271835

  10. S. Lehtimäki, M. Li, J. Salomaa, J. Pörhönen, A. Kalanti, S. Tuukkanen, P. Heljo, K. Halonen, D. Lupo, Int. J. Electron. Power 58, 42 (2014). doi:10.1016/j.ijepes.2014.01.004

    Article  Google Scholar 

  11. M. Kaempgen, J. Ma, G. Gruner, G. Wee, S.G. Mhaisalkar, Appl. Phys. Lett. 90(26), 264104 (2007). doi:10.1063/1.2749187

    Article  ADS  Google Scholar 

  12. S.W. Kim, T. Kim, Y.S. Kim, H.S. Choi, H.J. Lim, S.J. Yang, C.R. Park, Carbon 50(1), 3 (2012). doi:10.1016/j.carbon.2011.08.011

    Article  Google Scholar 

  13. L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, Y. Cui, Proc. Natl. Acad. Sci. 106(51), 21490 (2009). doi:10.1073/pnas.0908858106

    Article  ADS  Google Scholar 

  14. L. Hu, H. Wu, Y. Cui, Appl. Phys. Lett. 96(18), 183502 (2010). doi:10.1063/1.3425767

    Article  ADS  Google Scholar 

  15. S. Hu, R. Rajamani, X. Yu, Appl. Phys. Lett. 100(10), 104103 (2012). doi:10.1063/1.3691948

    Article  ADS  Google Scholar 

  16. M. Endo, M.S. Strano, P.M. Ajayan, in Carbon nanotubes, ed. by A. Jorio, M.S. Dresselhaus, G. Dresselhaus (Springer, 2008)

  17. M.D. Stoller, R.S. Ruoff, Energy Environ. Sci. 3(9), 1294 (2010). doi:10.1039/C0EE00074D

    Article  Google Scholar 

  18. International Electrotechnical Comission. International standard: fixed electric double layer capacitors for use in electronic equipment, IEC 62391–1 (2006)

  19. F.M. Smits, Bell Syst. Tech. J. 37(3), 711 (1958)

    Article  Google Scholar 

  20. V. Khomenko, E. Raymundo-Pinero, E. Frackowiak, F. Beguin, Appl. Phys. A Mater. Sci. 82(4), 567 (2006). doi:10.1007/s00339-005-3397-8

    Article  ADS  Google Scholar 

  21. A.E. da Silva, H.R. Marcelino, M.C.S. Gomes, E.E. Oliveira, T. Nagashima Jr, E.S.T. Egito, in products and applications of biopolymers, ed. by J. Voorbeck (InTech, 2012), pp. 61–84

  22. L. Biro, N. Khanh, Z. Vertesy, Z. Horvath, Z. Osvath, A. Koos, J. Gyulai, A. Kocsonya, Z. Konya, X. Zhang et al., Mater. Sci. Eng. C 19(1), 9 (2002). doi:10.1016/S0928-4931(01)00407-6

    Article  Google Scholar 

  23. Y. Li, X. Zhang, X. Tao, J. Xu, W. Huang, J. Luo, Z. Luo, T. Li, F. Liu, Y. Bao et al., Carbon 43(2), 295 (2005)

    Article  Google Scholar 

  24. Y. Xu, Z. Lin, X. Huang, Y. Wang, Y. Huang, X. Duan, Adv. Mater. 25(40), 5779 (2013). doi:10.1002/adma.201301928

    Article  Google Scholar 

  25. L. Vaisman, H.D. Wagner, G. Marom, Adv. Coll. Interface. 128, 37 (2006). doi:10.1016/j.cis.2006.11.007

    Article  Google Scholar 

  26. M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Chem. Phys. Lett. 342(3), 265 (2001). doi:10.1016/S0009-2614(01)00490-0

    Article  ADS  Google Scholar 

  27. R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, R. Yerushalmi-Rozen, Nano Lett. 2(1), 25 (2002). doi:10.1021/nl010065f

    Article  ADS  Google Scholar 

  28. F.A. Murphy, C.A. Poland, R. Duffin, K.T. Al-Jamal, H. Ali-Boucetta, A. Nunes, F. Byrne, A. Prina-Mello, Y. Volkov, S. Li et al., Am. J. Pathol. 178(6), 2587 (2011). doi:10.1016/j.ajpath.2011.02.040

    Article  Google Scholar 

  29. J.Y. Kim, C.S. Lee, J.H. Han, J.W. Cho, J. Bae, Electrochem. Solid State 14(4), A56 (2011). doi:10.1149/1.3549171

    Google Scholar 

  30. A. Znidarsic, A. Kaskela, P. Laiho, M. Gaberscek, Y. Ohno, A.G. Nasibulin, E.I. Kauppinen, A. Hassanien, J. Phys. Chem. C 117(25), 13324 (2013). doi:10.1021/jp403983y

    Article  Google Scholar 

  31. L. Zubieta, R. Bonert, IEEE T Ind. Appl. 36(1), 199 (2000). doi:10.1109/28.821816

    Article  Google Scholar 

  32. L.L. Zhang, X. Zhao, Chem. Soc. Rev. 38(9), 2520 (2009). doi:10.1039/B813846J

    Article  Google Scholar 

  33. T. Thuy Pham, C.W. Cho, Y.S. Yun, Water Res. 44(2), 352 (2010). doi:10.1016/j.watres.2009.09.030

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Veijo Kangas of Morphona for the preparation of the ink. The authors acknowledge funding from the Academy of Finland (Dec. No. 138146 and 139881) and the Finnish Funding Agency for Technology and Innovation (TEKES, Dec. No. 40049/12). S. Lehtimäki would like to thank Tekniikan edistämissäätiö for supporting the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvi Lehtimäki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lehtimäki, S., Tuukkanen, S., Pörhönen, J. et al. Low-cost, solution processable carbon nanotube supercapacitors and their characterization. Appl. Phys. A 117, 1329–1334 (2014). https://doi.org/10.1007/s00339-014-8547-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8547-4

Keywords

Navigation