Skip to main content

Advertisement

Log in

Analysis of alumina-based titanium carbide composites by laser-induced breakdown spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, alumina (Al2O3) containing different volume % of titanium carbide (TiC) ranging from 0 to 30 were consolidated by the novel spark plasma sintering. The spectroscopic analysis of the plasma generated by irradiation of laser Nd:YAG (λ = 1,064 nm) on different concentrations of the composites in air atmospheric pressure was performed. The qualitative examination of the composites confirms the presence of aluminum, titanium, and carbon as major elements, while magnesium and sodium have been found as minor trace elements. Plasma parameters were estimated by assuming the LTE conditions for optically thin plasma. The electron density and temperature were evaluated by using the Stark broadening and intensity of selected aluminum emission lines, respectively. The addition of TiC to Al2O3 shows a linear behavior with plasma temperature corroborated by the calibration curve of Ti in the composites. The results suggest that calibration curve between plasma temperature and the composites can be used to estimate different concentrations of TiC in Al2O3 without analyzing the whole elements in the composites and thus opens up new applications of LIBS in ceramic industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Sarkar, D. Alamelu, S.K. Aggarwal, J. Nucl. Mater. 384, 158 (2009)

    Article  ADS  Google Scholar 

  2. F.J. Fortes, J.J. Laserna, Spectrochim. Acta Part B 65, 975 (2010)

    Article  ADS  Google Scholar 

  3. L.J. Radziemski, Spectrochim. Acta Part B 57, 1109 (2002)

    Article  ADS  Google Scholar 

  4. D. Santos Jr, L.C. Nunes, G.G.A. de Carvalho, M.D.S. Gomes, P.F. de Souza, F.D.O. Leme, L.G.C. dos Santos, F.J. Krug, Spectrochim. Acta Part B 71–72, 3 (2012)

    Article  Google Scholar 

  5. A.C. Popescu, S. Beldjilali, G. Socol, V. Craciun, I.N. Mihailescu, J. Hermann, J. Appl. Phys. 110, 083116 (2011)

    Article  ADS  Google Scholar 

  6. M. Kuzuya, M. Murakami, N. Maruyama, Spectrochim. Acta Part B 58, 957 (2003)

    Article  ADS  Google Scholar 

  7. M.M. Tripathi, K.E. Eseller, F.-Y. Yueh, J.P. Singh, Spectrochim. Acta Part B 64, 1212 (2009)

    Article  ADS  Google Scholar 

  8. F.-Y. Yueh, H. Zheng, J.P. Singh, S. Burgess, Spectrochim. Acta Part B 64, 1059 (2009)

    Article  ADS  Google Scholar 

  9. V. Dikshit, F.-Y. Yueh, J.P. Singh, D.L. McIntyre, J.C. Jain, N. Melikechi, Spectrochim. Acta Part B 68, 65 (2012)

    Article  ADS  Google Scholar 

  10. J.S. Cowpe, R.D. Moorehead, D. Moser, J.S. Astin, S. Karthikeyan, S.H. Kilcoyne, G. Crofts, R.D. Pilkington, Spectrochim. Acta Part B 66, 290 (2011)

    Article  ADS  Google Scholar 

  11. M. Garcimuño, D.M. Díaz Pace, G. Bertuccelli, Opt. Laser Technol. 47, 26 (2013)

    Article  ADS  Google Scholar 

  12. K. Zimmermann, G.A. Schneider, A.K. Bhattacharya, W. Hintze, J. Am. Ceram. Soc. 90, 3773 (2007)

    Google Scholar 

  13. M. Cain, R. Morrell, Appl. Organomet. Chem. 15, 321 (2001)

    Article  Google Scholar 

  14. K. Ahmad, W. Pan, Compos. Sci. Technol. 68, 1321 (2008)

    Article  Google Scholar 

  15. Y.M. Ko, W.T. Kwon, Y.-W. Kim, Ceram. Int. 30, 2081 (2004)

    Article  Google Scholar 

  16. L. Zhu, L. Luo, J. Li, Y. Wu, Int. J. Refract. Met. Hard Mater. 34, 61 (2012)

    Article  Google Scholar 

  17. A. Goldstein, A. Singurindi, J. Am. Ceram. Soc. 83, 1530 (2000)

    Article  Google Scholar 

  18. P. L. Kelley, B. Lax, P. E. Tannenwald, and U. S. O. O. N. Research, Physics of Quantum Electronics: Conference Proceedings (McGraw-Hill, 1966)

  19. M. Thiyagarajan, S. Thompson, J. Appl. Phys. 111, 073302 (2012)

  20. D.E. Lencioni, Appl. Phys. Lett. 25, 15 (1974)

    Article  ADS  Google Scholar 

  21. http://physics.nist.gov

  22. G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, N. Omenetto, Spectrochim. Acta Part B 65, 86 (2010)

    Article  ADS  Google Scholar 

  23. A. P. Thorne, Spectrophysics (London, Chapman and Hall; New York, Wiley, 1974), pp. 354–357

  24. H.R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964)

    Google Scholar 

  25. W.T.Y. Mohamed, Prog. Phys. 2, 87 (2007)

    Google Scholar 

  26. V.V. Gusarskii, Y.Y. Kuzyakov, K.A. Semenenko, L.N. Timofeeva, J. Appl. Spectrosc. 31, 1224 (1979)

    Article  ADS  Google Scholar 

  27. E. Cerrai, R. Trucco, Energ. Nucl. 15, 581 (1968)

    Google Scholar 

  28. K.F. Cai, D.S. McLachlan, N. Axen, R. Manyatsa, Ceram. Int. 28, 217 (2002)

    Article  Google Scholar 

  29. T. Si, N. Liu, Q.A. Zhang, X. You, Rare Met. 27, 308 (2008)

    Article  Google Scholar 

  30. T.A. Labutin, A.M. Popov, V.N. Lednev, N.B. Zorov, Spectrochim. Acta Part B 64, 938 (2009)

    Article  ADS  Google Scholar 

  31. D.A. Rusak, M. Clara, E.E. Austin, K. Visser, R. Niessner, B.W. Smith, J.D. Winefordner, Appl. Spectrosc. 51, 1628 (1997)

    Article  ADS  Google Scholar 

  32. O. Samek, D.C.S. Beddows, H.H. Telle, J. Kaiser, M. Liška, J.O. Cáceres, A. Gonzáles Ureña, Spectrochim. Acta Part B 56, 865 (2001)

    Article  ADS  Google Scholar 

  33. E.D. Whitney, P.N. Vaidyanathan, Am. Ceram. Soc. Bull. 67, 943 (1988)

    Google Scholar 

  34. Y. Yoon, T. Kim, M. Yang, K. Lee, G. Lee, Microchem. J. 68, 251 (2001)

    Article  Google Scholar 

  35. W.T. Mohamed, Opt. Appl. 37, 5 (2007)

    Google Scholar 

  36. B. Német, L. Kozma, Spectrochim. Acta Part B 50, 1869 (1995)

    Article  ADS  Google Scholar 

  37. Y. Iida, Spectrochim. Acta Part B 45, 1353 (1990)

    Article  ADS  Google Scholar 

  38. G. Bekefi, W.P. Allis, Principles of Laser Plasmas (Wiley, Australia Limited, 1976)

    Google Scholar 

  39. R. Gaudiuso, M. Dell’Aglio, O.D. Pascale, G.S. Senesi, A.D. Giacomo, Sensors 10, 7434 (2010)

    Article  Google Scholar 

  40. K. Song, H. Cha, J. Lee, Y.-I. Lee, Microchem. J. 63, 53 (1999)

    Article  Google Scholar 

  41. B. Charfi, M.A. Harith, Spectrochim. Acta Part B 57, 1141 (2002)

    Article  ADS  Google Scholar 

  42. J.P. Singh, S.N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier Science, Amsterdam, 2007)

    Google Scholar 

  43. R.H. Huddlestone, S.L. Leonard, Plasma Diagnostic Techniques (Academic Press, New York, 1965)

    Google Scholar 

  44. M. Milán, J.J. Laserna, Spectrochim. Acta Part B 56, 275 (2001)

    Article  ADS  Google Scholar 

  45. G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, N. Omenetto, Spectrochim. Acta Part B 65, 86 (2010)

    Article  ADS  Google Scholar 

  46. O. Samek, D.C.S. Beddows, J. Kaiser, S.V. Kukhlevsky, M. Lisˇka, H.H. Telle, J. Young, Opt. Eng. 39, 2248 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Research Center, College of Engineering King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaleem Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, K., Tawfik, W., Farooq, W.A. et al. Analysis of alumina-based titanium carbide composites by laser-induced breakdown spectroscopy. Appl. Phys. A 117, 1315–1322 (2014). https://doi.org/10.1007/s00339-014-8544-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8544-7

Keywords

Navigation