Skip to main content
Log in

Ultra-short pulsed laser deposition of gallium arsenide: a comprehensive study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A Gallium Arsenide target has been ablated by using a frequency-doubled Nd:glass laser with a pulse duration of 250 fs and thin films have been deposited in vacuum. The plasma produced by the ablation process and the deposited films have been studied by several different techniques, including optical emission spectroscopy, ICCD fast imaging and electron microscopies, X-ray diffraction, Raman spectroscopy, respectively. The data evidence that the films, which composition shows an excess of Ga, are formed by the coalescence of a large number of nanoparticles. These results, even if the plasma does not evidence the presence of nanoparticles, seem to indicate that the ablation-deposition mechanism is the same found for the majority of the other systems deposited by ultra-short pulse lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Perriere, E. Millon, M. Chamarro, M. Morcrette, C. Andreazza, Appl. Phys. Lett. 78, 2949 (2001)

    Article  ADS  Google Scholar 

  2. P. Balling, J. Schou, Rep. Prog. Phys. 76, 036502 (2013)

    Article  ADS  Google Scholar 

  3. P. Hermes, B. Danielzik, N. Fabricius, D. von der Linde, J. Kuhl, J. Heppner, B. Stritzker, A. Pospieszczyk, Appl. Phys. A 39, 9 (1986)

    Article  ADS  Google Scholar 

  4. K. Sokolowski-Tinten, J. Bialkowski, M. Boing, A. Cavalleri, D. von der Linde, Phys. Rev. B 58, R11805 (1998)

    Article  ADS  Google Scholar 

  5. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, D. von der Linde, Appl. Phys. Lett. 72, 2385 (1998)

    Article  ADS  Google Scholar 

  6. L. Huang, J.P. Callan, E.N. Glezer, E. Mazur, Phys. Rev. Lett. 80, 185 (1998)

    Article  ADS  Google Scholar 

  7. A. Cavalleri, C.W. Siders, C. Rose-Petruck, R. Jimenez, C.S. Toth, J.A. Squier, C.P.J. Barty, K.R. Wilson, K. Sokolowski-Tinten, M. Horn von Hoegen, D. von der Linde, Phys. Rev. B 63, 193306 (2001)

    Article  ADS  Google Scholar 

  8. A. Borowiec, M. MacKenzie, G.C. Weatherly, H.K. Haugen, Appl. Phys. A 77, 411 (2003)

    Article  ADS  Google Scholar 

  9. L.N. Dinh, S.E. Hayes, A.E. Wynne, M.A. Wall, C.K. Saw, B.C. Stuart, M. Balooch, A.K. Paravastu, J.A. Reimer, J. Mater. Sci. 37, 3953 (2002)

    Article  ADS  Google Scholar 

  10. T.W. Trelemberg, L.N. Dinh, C.K. Saw, B.C. Stuart, M. Balooch, Appl. Surf. Sci. 221, 364 (2004)

    Article  ADS  Google Scholar 

  11. T.W. Trelemberg, L.N. Dinh, B.C. Stuart, M. Balooch, Appl. Surf. Sci. 229, 268 (2004)

    Article  ADS  Google Scholar 

  12. A. De Bonis, A. Galasso, N. Ibris, M. Sansone, A. Santagata, R. Teghil, Surf. Coat. Technol. 207, 279 (2012)

    Article  Google Scholar 

  13. C. D’Andrea, F. Neri, P.M. Ossi, N. Santo, S. Trusso, Nanotechnology 20, 245606 (2009)

    Article  ADS  Google Scholar 

  14. R. Teghil, L. D’Alessio, A. De Bonis, A. Galasso, N. Ibris, A.M. Salvi, A. Santagata, P. Villani, J. Phys. Chem. A 113, 14969 (2009)

    Article  Google Scholar 

  15. N. Konjevic, W.L. Wiese, J. Phys. Chem. Ref. Data 19, 1307 (1990)

    Article  ADS  Google Scholar 

  16. T. Kumar, M. Kumar, G. Gupta, R.K. Pandey, S. Verma, D. Kanjilal, Nanoscale Res. Lett. 7, 552 (2012)

    Article  ADS  Google Scholar 

  17. S. Naritsuka, M. Mori, Y. Takeuchi, Y. Monno, T. Maruyama, Phys. Status Solidi C 2, 291 (2011)

    Article  ADS  Google Scholar 

  18. S.K. Mohanta, R.K. Soni, N. Gosvami, S. Tripathy, D. Kanjilal, Appl. Surf. Sci. 253, 4531 (2007)

    Article  ADS  Google Scholar 

  19. I.D. Desnica, M. Ivanda, M. Kranjcec, R. Murri, N. Pinto, J. Non Cryst. Solid 170, 263 (1994)

    Article  ADS  Google Scholar 

  20. J. Nayak, S.N. Sahu, Phys. E 41, 92 (2008)

    Article  Google Scholar 

  21. ICDD-JCPDS card n. 32-0389

  22. B. Ullrich, A. Erlacher, S. Yano, R. Schroeder, T.G. Gerasimov, H.J. Haugan, Proc. SPIE 4977, 180 (2003)

    Article  ADS  Google Scholar 

  23. G.H. Lv, B.Y. Man, Y.H. Zhang, A.H. Liu, Q.G. Zhang, Optik 115, 347 (2004)

    Article  ADS  Google Scholar 

  24. A.H. Liu, J. Plasma Phys. 73, 231 (2007)

    Article  ADS  Google Scholar 

  25. A. De Bonis, A. Santagata, A. Galasso, M. Sansone, R. Teghil, Appl. Surf. Sci. 302, 145 (2014)

    Article  ADS  Google Scholar 

  26. J.R. Arthur, J. Phys. Chem. Solids 28, 2257 (1967)

    Article  ADS  Google Scholar 

  27. J.S. Balkemore, J. Appl. Phys. 53, R123 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Teghil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Bonis, A., Santagata, A., Galasso, A. et al. Ultra-short pulsed laser deposition of gallium arsenide: a comprehensive study. Appl. Phys. A 117, 275–280 (2014). https://doi.org/10.1007/s00339-014-8543-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8543-8

Keywords

Navigation