Skip to main content
Log in

Theoretical and experimental investigations of the properties of Ge2Sb2Te5 and indium-doped Ge2Sb2Te5 phase change material

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have carried out comprehensive computational and experimental study on the face-centered cubic Ge2Sb2Te5 (GST) and indium (In)-doped GST phase change materials. Structural calculations, total density of states and crystal orbital Hamilton population have been calculated using first-principle calculation. 5 at.% doping of In weakens the Ge–Te, Sb–Te and Te–Te bond lengths. In element substitutes Sb to form In–Te-like structure in the GST system. In–Te has a weaker bond strength compared with the Sb–Te bond. However, both GST and doped alloy remain in rock salt structure. It is more favorable to replace Sb with In than with any other atomic position. X-ray diffraction (XRD) analysis has been carried out on thin film of In-doped GST phase change materials. XRD graph reveals that In-doped phase change materials have rock salt structure with the formation of In2Te3 crystallites in the material. Temperature dependence of impedance spectra has been calculated for thin films of GST and doped material. Thickness of the as-deposited films is calculated from Swanepoel method. Absorption coefficient (α) has been calculated for amorphous and crystalline thin films of the alloys. The optical gap (indirect band gap) energy of the amorphous and crystalline thin films has also been calculated by the equation \( \alpha h\nu = \beta (h\nu - E_{\text{g }} )^{2} \). Optical contrast (C) of pure and doped phase change materials have also been calculated. Sufficient optical contrast has been found for pure and doped phase change materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968)

    Article  ADS  Google Scholar 

  2. D. Adler, J. Vac. Sci. Technol. 10, 728 (1973)

    Article  ADS  Google Scholar 

  3. M. Wuttig, N. Yamada, Nat. Mater. 6, 824 (2007)

    Article  ADS  Google Scholar 

  4. H.F. Hamann, M. O’Boyle, Y.C. Martin, M. Rooks, H.K. Wickramasinghe, Nat. Mater. 5, 383 (2006)

    Article  ADS  Google Scholar 

  5. A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga, Nat. Mater. 3, 703 (2004)

    Article  ADS  Google Scholar 

  6. W. Welnic, A. Pamungkas, R. Detemple, C. Steimer, S. Bluegel, M. Wuttig, Nat. Mater. 5, 56 (2006)

    Article  ADS  Google Scholar 

  7. T.J. Park, S.Y. Choi, M.J. Kang, Thin Solid Films 515, 5049 (2007)

    Article  ADS  Google Scholar 

  8. Y. Kim, K. Jeong, M.H. Cho, U. Hwang, H.S. Jeong, K. Kim, Appl. Phys. Lett. 90, 171920 (2007)

    Article  ADS  Google Scholar 

  9. J.G. Hernádez, P.H. Fierro, B. Chao, Y. Kovalenko, E.M. Sánchez, E. Prokhorov, Thin Solid Films 503, 13 (2006)

    Article  ADS  Google Scholar 

  10. K. Wang, D. Wamwangi, S. Ziegler, C. Steimer, M.J. Kang, S.Y. Choi, M. Wuttig, Phys. Status Solidi A 201, 3087 (2004)

    Article  ADS  Google Scholar 

  11. B. Liu, Z. Song, T. Zhang, J. Xia, S. Feng, B. Chen, Thin Solid Films 478, 49 (2005)

    Article  ADS  Google Scholar 

  12. J. Tomforde, S. Buller, M. Ried, W. Bensch, D. Wamwangi, M. Heidelmann, M. Wuttig, Solid State Sci. 11, 683 (2009)

    Article  ADS  Google Scholar 

  13. Z. Sun, J. Zhou, A. Blomqvist, B. Johansson, R. Ahuja, Phys. Rev. Lett. 102, 075504 (2009)

    Article  ADS  Google Scholar 

  14. E. Cho, J. Im, C. Park, W.J. Son, D. Kim, H. Horii, J. Ihm, S. Han, J. Phys.: Condens. Matter 22, 205504 (2010)

    ADS  Google Scholar 

  15. J. Im, E. Cho, D. Kim, H. Horii, J. Ihm, S. Han, Phys. Rev. B 81, 245211 (2010)

    Article  ADS  Google Scholar 

  16. X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval’, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger, Comput. Phys. Commun. 180, 2582 (2009)

    Article  ADS  Google Scholar 

  17. X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet, M. Torrent, G. Zerah, M. Mikami, Ph Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval, L. Reining, R. Godby, G. Onida, D.R. Hamann, D.C. Allan, Zeit. Kristallogr. 220, 558 (2005)

    Google Scholar 

  18. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  19. T. Matsunaga, Y. Kubota, N. Yamada, Acta Crystallogr. B 60, 685 (2004)

    Article  Google Scholar 

  20. O.K. Andersen, Phys. Rev. B 12, 3060 (1975)

    Article  ADS  Google Scholar 

  21. O.K. Andersen, O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984)

    Article  ADS  Google Scholar 

  22. J. Koringa, Physica 13, 392 (1947)

    Article  MathSciNet  ADS  Google Scholar 

  23. W. Kohn, N. Rostoker, Phys. Rev. 94, 1111 (1954)

    Article  MATH  ADS  Google Scholar 

  24. Z.M. Sun, S. Kyrsta, D. Music, R. Ahuja, J.M. Schneider, Solid State Commun. 143, 240 (2007)

    Article  ADS  Google Scholar 

  25. R. Swanepoel, J. Phys. E: Sci. Instrum. 17, 896 (1984)

    Article  ADS  Google Scholar 

  26. R. Swanepoel, J. Phys. E: Sci. Instrum. 16, 1214 (1983)

    Article  ADS  Google Scholar 

  27. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  Google Scholar 

  28. YoungKuk Kim, K. Jeong, M.H. Cho, Appl. Phys. Lett. 90, 171920 (2007)

    Article  ADS  Google Scholar 

  29. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, J. Appl. Phys. 69, 2849 (1991)

    Article  ADS  Google Scholar 

  30. M.H.R. Lankhorst, J. Non-Cryst. Solids 297, 210 (2002)

    Article  ADS  Google Scholar 

  31. M. Okuda, H. Naito, T. Matsushita, Jpn. J. Appl. Phys. 31, 466 (1992)

    Article  ADS  Google Scholar 

  32. D.R. Lide, Handbook of Chemistry and Physics, 87th edn. (FL Chemical Rubber, Boca Raton, 2006)

    Google Scholar 

  33. Y. Maeda, H. Andoh, I. Ikuta, H. Minemura, J. Appl. Phys. 64, 1715 (1988)

    Article  ADS  Google Scholar 

  34. Y. Maeda, H. Andoh, I. Ikuta, M. Nagai, Y. Katoh, H. Minemura, N. Tsuboi, Y. Satoh, N. Gotoh, M. Ishigaki, Appl. Phys. Lett. 54, 893 (1989)

    Article  ADS  Google Scholar 

  35. L. Men, F. Jiang, F. Gan, Mater. Sci. Eng. B 47, 18 (1997)

    Article  Google Scholar 

  36. R. Pearson, Inorg. Chem. 27, 734 (1988)

    Article  Google Scholar 

  37. JCPDS Database (International Center for Diffraction Data, PA) 33, 1488 (1999)

  38. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Nat. Mater. 7, 653 (2008)

    Article  ADS  Google Scholar 

  39. J. Zhou, Z. Sun, L. Xu, R. Ahuja, Solid State Commun. 148, 113 (2008)

    Article  ADS  Google Scholar 

  40. T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, H. Hashimoto, Thin Solid Films 370, 258 (2000)

    Article  ADS  Google Scholar 

  41. Y.J. Park, J.Y. Lee, M.S. Youm, Y.T. Kim, H.S. Lee, J. Appl. Phys. 97, 093506 (2005)

    Article  ADS  Google Scholar 

  42. Z.M. Sun, J. Zhou, R. Ahuja, Phys. Rev. Lett. 96, 055507 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We are grateful to University Grants Commission (UGC), New Delhi, for providing financial assistance to complete this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Kaura, A., Mukul, M. et al. Theoretical and experimental investigations of the properties of Ge2Sb2Te5 and indium-doped Ge2Sb2Te5 phase change material. Appl. Phys. A 117, 1307–1314 (2014). https://doi.org/10.1007/s00339-014-8542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8542-9

Keywords

Navigation