Metastable carbon allotropes in picosecond-laser-modified diamond


In this paper, we report on the bulk modifications of type IIa single-crystal diamond with visible 10-ps pulses (at λ = 532 nm) and microstructural changes characterized by the appearance of several ‘unidentifiable’ vibrational modes in the frequency range of 1000–1400 cm−1 in the Raman spectra of laser-modified diamond. It is found that the new Raman modes are strongly pronounced in the spectra of high-stress regions in immediate proximity to the bulk microstructures in the absence of the G mode at ~1580 cm−1 characteristic of the sp2 phase. The high internal stresses are determined from the splitting of the triply degenerate diamond Raman line. The revealed structure transformation is localized within a narrow bulk layer near the bulk microstructures formed, and the stress relaxation is found to result in disappearance of the detected vibrational modes in the spectra. It is suggested that the formation of bulk regions with a sp3 carbon structure consisting of Z-carbon and hexagonal diamond is responsible for the appearance of new Raman modes in the spectra of laser-modified diamond. These findings evidence that the stress-assisted formation of novel metastable carbon phases or defect structures occur in the course of bulk modification of diamond with ps-laser pulses. In addition, we report the results of simulations of internal stresses in the system ‘graphitized cylinder-in-diamond’ to show (1) the effect of the mechanical properties of laser-modified diamond on the resulting stresses and (2) formation of bulk microscopic regions with high stresses of >10 GPa, i.e., the conditions at which various sp3 carbon allotropes and defect structures become more stable than graphite.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    H.O. Jeschke, M.E. Garcia, K.H. Bennemann, Appl. Phys. A 69(Suppl.), S49 (1999)

    Article  ADS  Google Scholar 

  2. 2.

    H.O. Jeschke, M.E. Garcia, K.H. Bennemann, Phys. Rev. B 60, R3701 (1999)

    Article  ADS  Google Scholar 

  3. 3.

    S. Preuss, M. Stuke, Appl. Phys. Lett. 67, 338 (1995)

    Article  ADS  Google Scholar 

  4. 4.

    A.A. Malyutin, S.V. Garnov, S.M. Pimenov, O.G. Tsarkova, V.I. Konov, SPIE 5147, 33 (2003)

    Article  ADS  Google Scholar 

  5. 5.

    J.B. Ashcom, PhD thesis (Harvard University, 2003);

  6. 6.

    Y. Shimotsuma, M. Sakakura, S. Kanehira, J. Qiu, P.G. Kazansky, K. Miura, K. Fujita, K. Hirao, J. Laser Micro/Nanoeng. 1, 181 (2006)

    Article  Google Scholar 

  7. 7.

    M. Shimizu, Y. Shimotsuma, M. Sakakura, T. Yuasa, H. Homma, Y. Minowa, K. Tanaka, K. Miura, K. Hirao, Opt. Express 17, 46 (2009)

    Article  ADS  Google Scholar 

  8. 8.

    T.V. Kononenko, M. Meier, M.S. Komlenok, S.M. Pimenov, V. Romano, V.P. Pashinin, V.I. Konov, Appl. Phys. A 90, 645 (2008)

    Article  ADS  Google Scholar 

  9. 9.

    T.V. Kononenko, M.S. Komlenok, V.P. Pashinin, S.M. Pimenov, V.I. Konov, M. Neff, V. Romano, W. Lüthy, Diam. Relat. Mater. 18, 196 (2009)

    Article  ADS  Google Scholar 

  10. 10.

    M. Neff, T.V. Kononenko, S.M. Pimenov, V. Romano, W. Lüthy, V.I. Konov, Appl. Phys. A 97, 543 (2009)

    Article  ADS  Google Scholar 

  11. 11.

    T.V. Kononenko, V.I. Konov, S.M. Pimenov, N.M. Rossukanyi, A.I. Rukovishnikov, V. Romano, Diam. Relat. Mater. 20, 264–268 (2011)

    Article  ADS  Google Scholar 

  12. 12.

    S.M. Pimenov, I.I. Vlasov, A.A. Khomich, B. Neuenschwander, M. Muralt, V. Romano, Appl. Phys. A 105, 673 (2011)

    Article  ADS  Google Scholar 

  13. 13.

    S.M. Pimenov, A.A. Khomich, I.I. Vlasov, E.V. Zavedeev, B. Neuenschwander, B. Jäggi, V. Romano, ALT Proceedings, vol. 1 (2012). doi:10.12684/alt.1.50

  14. 14.

    B. Caylar, M. Pomorski, P. Bergonzo, Appl. Phys. Lett. 103, 043504 (2013)

    Article  ADS  Google Scholar 

  15. 15.

    A. Oh, B. Caylar, M. Pomorski, T. Wengler, Diam. Relat. Mater. 38, 9 (2013)

    Article  ADS  Google Scholar 

  16. 16.

    T. Kononenko, V. Ralchenko, A. Bolshakov, V. Konov, P. Allegrini, M. Pacilli, G. Conte, E. Spiriti, Appl. Phys. A 114, 297 (2014)

    Article  ADS  Google Scholar 

  17. 17.

    V.N. Strekalov, V.I. Konov, V.V. Kononenko, S.M. Pimenov, Appl. Phys. A 76, 603 (2003)

    Article  ADS  Google Scholar 

  18. 18.

    S.M. Pimenov, B. Neuenschwander, B. Jäggi, V. Romano, Appl. Phys. A 114, 1309 (2014)

    Article  ADS  Google Scholar 

  19. 19.

    R.H. Telling, C.J. Pickard, M.C. Payne, J.E. Field, Phys. Rev. Lett. 84, 5160 (2000)

    Article  ADS  Google Scholar 

  20. 20.

    W.L. Mao, H. Mao, P.J. Eng, T.P. Trainor, M. Newville, C. Kao, D.L. Heinz, J. Shu, Y. Meng, R.J. Hemley, Science 302, 425 (2003)

    Article  ADS  Google Scholar 

  21. 21.

    Q. Li, Y. Ma, A.R. Oganov, H. Wang, H. Wang, Y. Xu, T. Cui, H.-K. Mao, G. Zou, Phys. Rev. Lett. 102, 175506 (2009)

    Article  ADS  Google Scholar 

  22. 22.

    J.-T. Wang, C. Chen, Y. Kawazoe, Phys. Rev. Lett. 106, 075501 (2011)

    Article  ADS  Google Scholar 

  23. 23.

    M. Amsler, J.A. Flores-Livas, L. Lehtovaara, F. Balima, S. Alireza Ghasemi, D. Machon, S. Pailhès, A. Willand, D. Caliste, S. Botti, A. San Miguel, S. Goedecker, M.A.L. Marques, Phys. Rev. Lett. 108, 065501 (2012)

    Article  ADS  Google Scholar 

  24. 24.

    Zh Li, F. Gao, Z. Xu, Phys. Rev. B 85, 144115 (2012)

    Article  ADS  Google Scholar 

  25. 25.

    J.A. Flores-Livas, L. Lehtovaara, M. Amsler, S. Goedecker, S. Pailhès, S. Botti, A. San Miguel, M.A.L. Marques, Phys. Rev. B 85, 155428 (2012)

    Article  ADS  Google Scholar 

  26. 26.

    S. Botti, M. Amsler, J.A. Flores-Livas, P. Ceria, S. Goedecker, M.A.L. Marques, Phys. Rev. B 88, 014102 (2013)

    Article  ADS  Google Scholar 

  27. 27.

    K. Weingarten, Laser Tech. J. 6(3), 51 (2009)

    Article  Google Scholar 

  28. 28.

    B. Neuenschwander, G.F. Bucher, C. Nussbaum, B. Joss, M. Muralt, U.W. Hunziker, P. Schuetz, Proc. SPIE 7584, 75840R (2010)

    Article  ADS  Google Scholar 

  29. 29.

  30. 30.

    I. Friel, S.I. Clewes, H.K. Dhillon, N. Perkins, D.J. Twitchen, G.A. Scarsbrook, Diam. Relat. Mater. 18, 808 (2009)

    Article  ADS  Google Scholar 

  31. 31.

    R.P. Mildren, Intrinsic Optical Properties of Diamond, in Optical Engineering of Diamond, ed. by R.P. Mildren, J.R. Rabeau (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2013)

  32. 32.

    A. Wotherspoon, J.W. Steeds, P. Coleman, D. Wolverson, J. Davies, S. Lawson, J. Butler, Diam. Relat. Mater. 11, 692 (2002)

    Article  ADS  Google Scholar 

  33. 33.

    A.C. Ferrari, B. Kleinsorge, N.A. Morrison, A. Hart, V. Stolojan, J. Robertson, J. Appl. Phys. 85, 7191 (1999)

    Article  ADS  Google Scholar 

  34. 34.

    T.V. Kononenko, A.A. Khomich, V.I. Konov, Diam. Relat. Mater. 37, 50 (2013)

    Article  ADS  Google Scholar 

  35. 35.

    M.J. Matthews, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, M. Endo, Phys. Rev. B 59, R6585 (1999)

    Article  ADS  Google Scholar 

  36. 36.

    A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    Article  ADS  Google Scholar 

  37. 37.

    L.D. Landau, E.M. Lifshitz, Theory of Elasticity (Volume 7 of A Course of Theoretical Physics) (Pergamon Press, Oxford, 1970)

  38. 38.

    T.A. Friedmann, J.P. Sullivan, J.A. Knapp, D.R. Tallant, D.M. Follstaedt, D.L. Medlin, P.B. Mirkarimi, Appl. Phys. Lett. 71, 3820 (1997)

    Article  ADS  Google Scholar 

  39. 39.

    A.C. Ferrari, J. Robertson, M.G. Beghi, C.E. Botani, R. Ferulano, R. Pastorelli, Appl. Phys. Lett. 75, 1893 (1999)

    Article  ADS  Google Scholar 

  40. 40.

    H.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes (Properties, Processing and Applications), P.A. Thrower, Editor-in-Chief. (Noyes Publications, Park Ridge, 1993), p. 417

  41. 41.

    J.E. Field, C.S.J. Pickles, Diam. Relat. Mater. 5, 625 (1996)

    Article  ADS  Google Scholar 

  42. 42.

    S. Prawer, R.J. Nemanich, Philos. Trans. R. Soc. Lond. A 362, 2537 (2004)

    Article  ADS  Google Scholar 

  43. 43.

    M.H. Grimsditch, E. Anastassakis, M. Cardona, Phys. Rev. B 18, 901 (1978)

    Article  ADS  Google Scholar 

  44. 44.

    J.M. Boteler, Y.M. Gupta, Phys. Rev. Lett. 71, 3497 (1993)

    Article  ADS  Google Scholar 

  45. 45.

    I.I. Vlasov, V.G. Ralchenko, E.D. Obraztsova, A.A. Smolin, V.I. Konov, Appl. Phys. Lett. 71, 1789 (1997)

    Article  ADS  Google Scholar 

  46. 46.

    E. Anastassakis, J. Appl. Phys. 86, 249 (1999)

    Article  ADS  Google Scholar 

  47. 47.

    S.M. Pimenov, V.V. Kononenko, T.V. Kononenko, V.I. Konov, P. Fischer, V. Romano, H.P. Weber, A.V. Khomich, R.A. Khmelnitskiy, New Diam. Front. Carbon Technol. 14(1), 21 (2004)

    Google Scholar 

  48. 48.

    A. Tardieu, F. Cansell, J.P. Petitet, J. Appl. Phys. 68, 3243 (1990)

    Article  ADS  Google Scholar 

  49. 49.

    P. Pavone, K. Karch, O. Shutt, W. Windl, D. Strauch, P. Giannozzi, S. Baroni, Phys. Rev. B 48, 3156 (1993)

    Article  ADS  Google Scholar 

  50. 50.

    J.O. Orwa, K.W. Nugent, D.N. Jamieson, S. Prawer, Phys. Rev. B 62, 5461 (2000)

    Article  ADS  Google Scholar 

  51. 51.

    O.N. Poklonskaya, A.A. Khomich, J. Appl. Spectrosc. 80, 715 (2013)

    Article  ADS  Google Scholar 

  52. 52.

    A.V. Khomich, R.A. Khmelnitskii, X.J. Hu, A.A. Khomich, A.F. Popovich, I.I. Vlasov, V.A. Dravin, Y.G. Chen, A.E. Karkin, V.G. Ralchenko, J. Appl. Spectrosc. 80, 707 (2013)

    Article  ADS  Google Scholar 

Download references


The work was partly supported by the SNSF project IZ73Z0-128088/1.

Author information



Corresponding author

Correspondence to Sergei M. Pimenov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pimenov, S.M., Khomich, A.A., Vlasov, I.I. et al. Metastable carbon allotropes in picosecond-laser-modified diamond. Appl. Phys. A 116, 545–554 (2014).

Download citation


  • Raman Spectrum
  • Raman Band
  • Raman Line
  • Raman Mode
  • Bulk Region