Skip to main content
Log in

Laser abrading of carbon fibre reinforced composite for improving paint adhesion

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Surface contaminations (originating from manufacturing processes), smooth surface, and poor wettability of carbon fiber reinforced polymer (CFRP) composite impair its successful paint adhesion. Surface pre-treatment of composite materials is often required. Previous approaches of using manual sand-papering result in non-uniform surface conditions and occasional damages to the fibres. Furthermore, the process is labour intensive, slow and can be hazardous to the workers if protections are not appropriate. This paper reports an investigation into a new surface treatment method based on laser multi-tasking surface abrading and surface cleaning/texturing for the improvement of paint adhesion. A KrF Excimer laser with a wavelength of 248 nm is used as the laser source. Significant improvement in paint adhesion has been demonstrated compared with as-received and sand-papered samples. This improvement is achieved by eliminating surface contaminants, minimizing chain scission and increasing in surface active functional groups as well as increasing in surface roughness. The former two play dominant roles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q. Benard, M. Fois, M. Grisel, Int. J. Adhes. Adhes. 24, 404–409 (2005)

    Article  Google Scholar 

  2. G.K.A. Kodokian, A.J. Kinloch, J. Mater. Sci. Lett. 7, 625–627 (1988)

    Article  Google Scholar 

  3. T. M. S. Iannace, F. Bellucci, L. Ambrosio, L. Nicolais, in Proceedings of the European Conference on Advanced Materials and Processes, p. 663–670 (1995)

  4. F. Caiazzo, P. Canonico, R. Nigro, V. Tagliaferri, J. Mater. Process. Technol. 58, 96–99 (1996)

    Article  Google Scholar 

  5. S.K. Om, Surf. Eng. Nonmet. Mater. 6, 892–899 (1993)

    Google Scholar 

  6. P. Davies, C. Courty, N. Xanthopoulos, H.J. Mathieu, J. Mater. Sci. Lett. 10, 335–338 (1991)

    Article  Google Scholar 

  7. A. Baalmann, K.D. Vissing, E. Born, A. Gross, J. Adhes. 46, 57–66 (1994)

    Article  Google Scholar 

  8. C.K. Jung, I.S. Bae, S.B. Lee, J.H. Cho, E.S. Shin, S.C. Choi, J.H. Boo, Thin Solid Films 506–507, 316–322 (2006)

    Article  Google Scholar 

  9. L. Crane, L.W. Hamermesh, C.L. Maus, SAMPE Journal 12, 6–9 (1976)

    Google Scholar 

  10. M.F.Q. Benard, M. Grisel, P. Laurens, F. Joubert, J. Thermoplast. Compos. Mater. 22, 51–61 (2009)

    Article  Google Scholar 

  11. A. J. Kinloch, G. K. Kodokian, J. Adhes. 21, 291–302 (1987)

  12. J.R.J. Wingfield, Int. J. Adhes. Adhes. 13, 151–156 (1993)

    Article  Google Scholar 

  13. B. M. Parker, R. M. Waghorne, Composites. 13, 280–288 (1982)

  14. M. Rotel, J. Zahavi, A. Buchman, H. Dodiuk, J. Adhes. 55, 77–97 (1995)

    Article  Google Scholar 

  15. M. Rotel, J. Zahavi, S. Tamir, A. Buchman, H. Dodiuk, Appl. Surf. Sci. 154, 610–616 (2000)

    Article  ADS  Google Scholar 

  16. Q. Benard, M. Fois, M. Grisel, P. Laurens, Int. J. Adhes. Adhes. 26, 543–549 (2006)

    Article  Google Scholar 

  17. J.K. Park, K. Mukherjee, Mater. Manuf. Process. 13, 359–368 (1998)

    Article  Google Scholar 

  18. Keiko Gotoh, Shino Kikuchi, Colloid Polym. Sci. 283, 1356–1360 (2005)

    Article  Google Scholar 

  19. P.E. Dyer, S.T. Lau, G.A. Oldershawa, D. Schudela, J. Mater. Res. 7, 1152–1157 (1992)

    Article  ADS  Google Scholar 

  20. D. Y. Kim, K. Lee, C. Lee, in Proceedings of SPIE 5063 (2003)

  21. J. Breuer, S. Metev, G. Sepold, J. Adhes. Sci. Technol. 9, 351–363 (1995)

    Article  Google Scholar 

  22. F.Y. Sakata, A.M.E. Santo, W. Miyakawa, R. Riva, M.S.F. Lima, Surf. Eng. 25, 180–186 (2008)

    Article  Google Scholar 

  23. A. Samad-Zadeh, M. Harsono, A. Belikov, K.V. Shatilova, A. Skripnik, P. Stark, C. Egles, G. Kugela, Dental Mater. 27, 1038–1044 (2011)

    Article  Google Scholar 

  24. E. Yasa, J.P. Kurth, Precis. Eng. 34(2010), 101–112 (2010)

    Article  Google Scholar 

  25. V.A. Katulin, Hyperfine Interact. 37, 423–432 (1987)

    Article  ADS  Google Scholar 

  26. W.M. Steen, Laser Material Processing, 3rd edn. (Spinger-Verlag London Limited, USA, 2003)

    Book  Google Scholar 

  27. Kim Jong Min, Kim Jin Kook, Lee Dai Gil, J. Adhes. Sci. Technol. 17(11), 1523–1542 (2003)

    Article  Google Scholar 

  28. Lino Ferreira, Marta B. Evangelista, M. Cristina, L. Martins, Pedro L. Granja, Jose L. Esteves, Mario A. Barbosa, Polymer 46, 9840–9850 (2005)

    Article  Google Scholar 

  29. Qi Song, Anil N. Netravali, J. Adhes. Sci. Technol. 12(9), 957–982 (1998)

    Article  Google Scholar 

  30. Firas Awaja, Paul J. Pigram, Polym. Degrad. Stabil. 94, 651–658 (2009)

    Article  Google Scholar 

  31. M. Thiyagarajan, IEEE Trans. Plasma Sci. 36(5), 2512–2521 (2008)

    Article  ADS  Google Scholar 

  32. Martin K. Beyer, Hauke Clausen-Schaumann, Chem.l Rev. 105(8), 2921–2948 (2005)

    Article  Google Scholar 

  33. J. Lawrence, L. Li, Mater. Sci. Eng. A 303(1–2), 142–149 (2001)

    Article  Google Scholar 

  34. D. Quere, Physica A 313(1–2), 32–46 (2002)

    Article  ADS  Google Scholar 

  35. H. Yaghoubi, N. Taghavinia, E.K. Alamdari, Surf. Coat. Technol. 204, 1562–1568 (2010)

    Article  Google Scholar 

  36. K.L. Mittal, Polymer Surface Modification: Relevance to Adhesion, vol. 2 (VSP, Netherland, 2000)

    Google Scholar 

  37. G.P.A. Turner, Introduction to Paint Chemistry and Principles of Paint Technology, 2nd edn. (Chapman and Hall Ltd, USA, 1980)

    Book  Google Scholar 

  38. Firas Awaja, Michael Gilbert, Georgina Kelly, Bronwyn Fox, Paul J. Pigram, Progr. Polym. Sci. 34, 948–968 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the project by the Engineering and Physical Sciences Research Council (EPSRC) and the Technology Strategy Board (TSB) under grant EP/G\(034745/1\) andAB\(265C/4\) L\(8001\)D respectively, in the SAMULET (Strategic Affordable Manufacturing in UK with Leading Environmental Technologies) programme, as well as BAe Systems, contract No: \(93001376\)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Long See.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

See, T.L., Liu, Z., Cheetham, S. et al. Laser abrading of carbon fibre reinforced composite for improving paint adhesion. Appl. Phys. A 117, 1045–1054 (2014). https://doi.org/10.1007/s00339-014-8527-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8527-8

Keywords

Navigation