Advertisement

Applied Physics A

, Volume 117, Issue 1, pp 261–268 | Cite as

Laser prepared organic heterostructures based on star-shaped arylenevinylene compounds

  • A. Stanculescu
  • G. Socol
  • M. Grigoras
  • T. Ivan
  • L. Vacareanu
  • M. Socol
  • O. Rasoga
  • C. Breazu
  • I. N. Mihailescu
  • I. Iordache
  • N. Preda
  • F. Stanculescu
Article

Abstract

This paper presents some studies about the preparation by matrix-assisted pulsed laser evaporation (MAPLE) technique of organic bulk heterojunctions made from the mixture of a star-shaped arylenevinylene compound, 4,4′,4″-tris[(4′-diphenylamino)styryl] triphenylamine as donor and fullerene derivative, [6, 6]-phenyl C61 butyric acid butyl ester, as acceptor, in the weight ratio 1:2. The mixed layer has been characterized by spectroscopic (UV–Vis, Fourier transform infrared) and microscopic (AFM) methods, and the effects of the deposition conditions (number of pulses) and of a buffer layer of poly(aniline-co-aniline propane sulfonic acid) or poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) have been analyzed. The study of the electrical properties has revealed a typical solar cell behavior for the heterostructure glass/ITO/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/4,4′,4″-tris[(4′-diphenylamino)styryl] triphenylamine: [6, 6]-phenyl C61 butyric acid butyl ester/Al, confirming that MAPLE could be an adequate method for the preparation of active layer based on bulk heterojunction for solar cells.

Keywords

Fullerene Root Mean Square Buffer Layer Active Layer Styryl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was financially supported by the Romanian Ministry of Education and Research through National Core Founding Program Contract No. 45 N/2009, Addendum 4/2013, ANCS STAR_ROSA Contract No.65/2013 and UEFISCDI ID-PCE Contract No. 148/2011.

References

  1. 1.
    M.C. Scharber, N.S. Sariciftci, Prog. Polym. Sci. 38, 1929 (2013)CrossRefGoogle Scholar
  2. 2.
    G. Cennler, M.C. Scharber, C.J. Brabec, Adv. Mater. 21, 1323 (2009)CrossRefGoogle Scholar
  3. 3.
    J. Nelson, Mater. Today 14, 462 (2011)CrossRefGoogle Scholar
  4. 4.
    B.C. Thompson, J.M.J. Fréchet, Angew. Chem. Int. Ed. 47, 58 (2008)CrossRefGoogle Scholar
  5. 5.
    H. Derouiche, J.C. Bernede, J. L’Hyver, Dyes Pigm. 63, 277 (2004)CrossRefGoogle Scholar
  6. 6.
    V. Califano, F. Bloisi, L.R.M. Vicari, P. Colombi, E. Bontempi, L.E. Depero, Appl. Surf. Sci. 254, 7143 (2008)CrossRefADSGoogle Scholar
  7. 7.
    A.P. Caricato, A. Luches, Appl. Phys. A 105, 565 (2011)CrossRefADSGoogle Scholar
  8. 8.
    A.P. Caricato, M. Cesaria, G. Gigli, A. Loiudice, A. Luches, M. Martino, V. Resta, A. Rizzo, A. Taurino, Appl. Phys. Lett. 100, 073306 (2012)CrossRefADSGoogle Scholar
  9. 9.
    A. Piqué, R.C.Y. Auyeung, J.L. Stepnowski, D.W. Weir, C.B. Arnold, R.A. McGill, D.B. Chrisey, Surf. Coat. Technol. 163–164, 293 (2003)CrossRefGoogle Scholar
  10. 10.
    A. Piqué, Appl. Phys. A 105, 517 (2011)CrossRefADSGoogle Scholar
  11. 11.
    A.P. Caricato, G. Leggieri, M. Martino, A. Vantaggiato, D. Valerini, A. Creti, M. Lomascolo, M.G. Manera, R. Rella, M. Anni, Appl. Phys. A 101, 759 (2010)CrossRefADSGoogle Scholar
  12. 12.
    D.B. Chrisey, A. Piqué, R.A. McGill, J.S. Horwitz, B.R. Ringeisen, D.M. Bubb, P.K. Wu, Chem. Rev. 103, 553 (2003)CrossRefGoogle Scholar
  13. 13.
    R. Fryček, M. Jelínek, T. Kocourek, P. Fitl, M. Vrňata, V. Myslík, M. Vrbová, Thin Solid Films 495, 308 (2006)CrossRefADSGoogle Scholar
  14. 14.
    K. Rodrigo, P. Czuba, B. Toftmann, J. Schou, R. Pedrys, Appl. Surf. Sci. 252, 4824 (2006)CrossRefADSGoogle Scholar
  15. 15.
    F. Bloisi, M. Barra, A. Cassinese, L.R.M. Vicari, J. Nanomater. 2012, ID395436 (2012)Google Scholar
  16. 16.
    A. Stanculescu, O. Rasoga, N. Preda, M. Socol, F. Stanculescu, I. Ionita, A.M. Albu, G. Socol, Ferroelectrics 389, 159 (2009)CrossRefGoogle Scholar
  17. 17.
    A. Stanculescu, M. Socol, G. Socol, I.N. Mihailescu, M. Girtan, F. Stanculescu, Appl. Phys. A 104, 921 (2011)CrossRefADSGoogle Scholar
  18. 18.
    H. Fujiwara, Spectroscopic ellipsometry principles and applications (John Wiley & Sons, New York, 2007)CrossRefGoogle Scholar
  19. 19.
    F. Stanculescu, A. Stanculescu, M. Socol, J. Optoelectron. Adv. Mater. 9, 1352 (2007)Google Scholar
  20. 20.
    F. Yakuphanoglu, M. Sekerci, A. Balaban, Opt. Mat. 27, 1369 (2005)CrossRefGoogle Scholar
  21. 21.
    F. Urbach, Phys. Rev. 92, 1324 (1953)CrossRefADSGoogle Scholar
  22. 22.
    S. Canulescu, J. Schou, S. Fǽster, K.V. Hansen, H. Conseil, Chem. Phys. Lett. 588, 119 (2013)CrossRefADSGoogle Scholar
  23. 23.

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Stanculescu
    • 1
  • G. Socol
    • 2
  • M. Grigoras
    • 3
  • T. Ivan
    • 3
  • L. Vacareanu
    • 3
  • M. Socol
    • 1
  • O. Rasoga
    • 1
  • C. Breazu
    • 1
  • I. N. Mihailescu
    • 2
  • I. Iordache
    • 2
  • N. Preda
    • 1
  • F. Stanculescu
    • 4
  1. 1.National Institute of Materials PhysicsBucharest, MagureleRomania
  2. 2.National Institute for Laser, Plasma and Radiation PhysicsBucharest, MagureleRomania
  3. 3.P. Poni Institute of Macromolecular ChemistryIasiRomania
  4. 4.Faculty of PhysicsUniversity of BucharestBucharest, MagureleRomania

Personalised recommendations