Skip to main content
Log in

Laser patterning of Fe–Si–B amorphous ribbons in magnetic field

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Site-specific nano-crystallization in an amorphous soft magnetic Fe–Si–B alloy was induced via laser processing on a magnetic substrate. The microstructure evolution was characterized using site-specific transmission electron microscopy, and the results are rationalized by diffusion-based calculations. A clear variation in grain-size and spatial distribution is observed at the center region compared with edge regions of the laser track. Additionally, the nano-crystalline phase exhibits a crystallographic texture at the edge region, whereas a random texture is obtained at the center of the laser track. The evolution of structure, size, and morphology of grains are explained by the influence of magnetic field-enhanced thermal effect on nucleation rate during crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64, 6044 (1988)

    Article  ADS  Google Scholar 

  2. G. Herzer, IEEE Trans. Magn. 25, 3327 (1989)

    Article  ADS  Google Scholar 

  3. K. Suzuki, N. Kataoka, A. Inoue, A. Makino, T. Masumoto, Mater. Trans. JIM 31, 743 (1990)

    Article  Google Scholar 

  4. G. Herzer (ed.), Nanocrystalline Soft Magnetic Alloys in Handbook of Magnetic Materials, ed. by K. H. J. Buschow (Elsevier Science: Amsterdam, 1997), p. 415

  5. K. Suzuki, G. Herzer, Soft Magnetic Nanostructures and Applications in Advanced Magnetic Nanostructures, ed. by D. Sellmyer, R. Skomski, (Springer, New York 2006), p. 365

  6. O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S. Sankar, J.P. Liu, Adv. Mater. 23, 821 (2011)

    Article  Google Scholar 

  7. Y. Yoshizawa, S. Oguma, K. Yamauchi, J. Appl. Phys. 64, 6044 (1988)

    Article  ADS  Google Scholar 

  8. Y. Yoshizawa, Y. Kiyotaka, in, Magnetic Properties Of Nanocrystalline Fe-Based Soft Magnetic Alloys 1991; Magnetic materials–microstructure and properties: symposium held April 30-May 3, 1991, (Anaheim, Cambridge Univ Press), 232 p. 183

  9. B.Z. Cui, M.Q. Huang, R.H. Yu, A. Kramp, J. Dent, D.D. Miles, S. Liu, J. Appl. Phys 93, 8128 (2003)

    Article  ADS  Google Scholar 

  10. B.Z. Cui, K. Han, H. Garmestani, J.H. Su, H.J. Schneider-Muntau, J.P. Liu, Acta Mater. 53, 4155 (2005)

    Article  Google Scholar 

  11. S. Rivoirard, V.M.T.S. Barthem, T. Garcin, E. Beaugnon, P.E.V. de Miranda, D. Givord, J. Phys. Conf. Ser. 156, 012009 (2009)

    Article  ADS  Google Scholar 

  12. R.F. Tournier, E. Beaugnon, Sci. Technol. Adv. Mater. 10, 014501 (2009)

    Article  Google Scholar 

  13. H. Morikawa, K. Sassa, S. Asai, Mater. Trans. JIM 39, 814 (1998)

    Article  Google Scholar 

  14. H. Fujii, S. Tsurekawa, Phys. Rev. B 83, 5 (2011)

    Article  Google Scholar 

  15. R. Onodera, S. Kimura, K. Watanabe, S. Lee, Y. Yokoyama, A. Makino, K. Koyama, Mater. Trans. 54, 188 (2013)

    Article  Google Scholar 

  16. R. Onodera, S. Kimura, K. Watanabe, Y. Yokoyama, A. Makino, K. Koyama: J. Alloys. Compd. (2014) http://dx.doi.org/10.1016/j.jallcom.2014.03.080

  17. H. Fujii, S. Tsurekawa, T. Matsuzaki, T. Watanabe, Philos. Mag. Lett. 86, 113 (2006)

    Article  ADS  Google Scholar 

  18. H. Fujii, V.A. Yardley, T. Matsuzaki, S. Tsurekawa, J. Mater. Sci. 43, 11 (2008)

    Article  Google Scholar 

  19. E. Jakubczyk, A. Krajczyk, M. Jakubczyk, J. Phys. Conf. Ser. 79, 1 (2007)

    Article  Google Scholar 

  20. Y. Wolfus, Y. Yeshurun, I. Felner, J. Wolny, Philoso. Mag. Part B 56, 963 (1987)

    Article  ADS  Google Scholar 

  21. V.A. Yardley, S. Tsurekawa, H. Fujii, T. Matsuzaki, Mater. Trans. 48, 2826 (2007)

    Article  Google Scholar 

  22. K. Chrissafis, M.I. Maragakis, K.G. Efthimiadis, E.K. Polychroniadis, J. Alloys Compd. 386, 165 (2005)

    Article  Google Scholar 

  23. K.G. Efthimiadis, G. Stergioudis, S.C. Chadjivasiliou, I.A. Tsoukalas, Cryst. Res. Technol. 37, 827 (2002)

    Article  Google Scholar 

  24. S. Katakam, J.Y. Hwang, H. Vora, S.P. Harimkar, R. Banerjee, N.B. Dahotre, Scr. Mater. 66, 538 (2012)

    Article  Google Scholar 

  25. S. Katakam, S. Santhanakrishnan, H. Vora, J.Y. Hwang, R. Banerjee, N.B. Dahotre, Philoso. Mag. Lett. 92, 617 (2012)

    Article  ADS  Google Scholar 

  26. S. Katakam, A. Devaraj, M. Bowden, S. Santhanakrishnan, C. Smith, R.V. Ramanujan, T. Suntharampillai, R. Banerjee, N.B. Dahotre, J. Appl. Phys. 114, 184901 (2013)

    Article  ADS  Google Scholar 

  27. G. Herzer, Scr. Metall. Mater. 33, 10–11 (1995)

    Article  Google Scholar 

  28. J. Horvath, J. Ott, K. Pfahler, W. Ulfert, Mater. Sci. Eng. 97, 409 (1988)

  29. U. Köster, J. Meinhardt, H. Alves, Mater. Sci. Forum Trans. Tech. Publ. 179, 533 (1995)

    Article  Google Scholar 

  30. A. L. Greer, Metall. Mater. Trans. A27, 549 (1996)

  31. T. Kulik, J. Non Cryst. Solids 287, 145 (2001)

    Article  ADS  Google Scholar 

  32. R.V. Ramanujan, Y.R. Zhang, Phys. Lett. 88, 182506 (2006)

    Google Scholar 

  33. R. Ramanujan, Y. Zhang, Phys. Rev. B 74, 224408 (2006)

    Article  ADS  Google Scholar 

  34. Y.R. Zhang, R.V. Ramanujan, Mater. Sci. Eng. A 416, 161 (2006)

    Article  Google Scholar 

  35. Y.R. Zhang, R.V. Ramanujan, Thin Solid Films 505, 97 (2006)

    Article  ADS  Google Scholar 

  36. K. Lu, Mater. Sci. Eng. R Reports 16, 161 (1996)

    Article  Google Scholar 

  37. X. Wang, M. Qi, S. Yi, Scr. Mater. 51, 1047 (2004)

    Article  Google Scholar 

  38. Z.H. Lai, H. Conrad, G.Q. Teng, Y.S. Chao, Mater. Sci. Eng. A287, 238 (2000)

    Article  Google Scholar 

  39. S. Tsurekawa, K. Okamoto, K. Kawahara, T. Watanabe, J. Mater. Sci. 40, 895 (2005)

    Article  ADS  Google Scholar 

  40. S. Tsurekawa, K. Kawahara, K. Okamoto, T. Watanabe, R. Faulkner, Mater. Sci. Eng. A387, 442 (2004)

    Article  Google Scholar 

  41. H. Vinzelberg, J. Schumann, D. Elefant, E. Arushanov, O.G. Schmidt, J. Appl. Phys. 104, 093707 (2008)

    Article  ADS  Google Scholar 

  42. T. Watanabe, Y. Suzuki, S. Tanii, H. Oikawa, Philos. Mag. Lett. 62, 9 (1990)

    Article  ADS  Google Scholar 

  43. T. Watanabe, S. Tsurekawa, X. Zhao, L. Zuo, C. Esling, J. Mater. Sci. 41, 7747 (2006)

    Article  ADS  Google Scholar 

  44. S. Rivoirard, V.M.T.S. Barthem, T. Garcin, E. Beaugnon, P.E.V. de Miranda, D. Givord, J. Phys. Conf. Ser. 156, 012009 (2009)

    Article  ADS  Google Scholar 

  45. S. Rivoirard, V.M.T.S. Barthem, R. Bres, E. Beaugnon, P.E.V. de Miranda, D. Givord, J. Appl. Phys. 104, 043915 (2008)

    Article  ADS  Google Scholar 

  46. H. Kato, K. Koyama, K. Takahashi, J. Appl. Phys 109, 07A726 (2011)

    Google Scholar 

  47. K. Hamaya, K. Ueda, Y. Kishi, Y. Ando, T. Sadoh, M. Miyao, Appl. Phys. Lett. 93, 132117 (2008)

    Article  ADS  Google Scholar 

  48. E.C. Passamani, J.R.B. Tagarro, C. Larica, A.A.R. Fernandes, J. Phys. Condens. Matter 14, 1975 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from National Science Foundation (NSF-CMMI 0969249). The authors acknowledge Center for Advanced Research and Technology (CART) at the University of North Texas for access to microscopy facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Dahotre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katakam, S., Dahotre, N. Laser patterning of Fe–Si–B amorphous ribbons in magnetic field. Appl. Phys. A 117, 1241–1247 (2014). https://doi.org/10.1007/s00339-014-8512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8512-2

Keywords

Navigation