Skip to main content
Log in

Hole transport characteristics in phosphorescent dye-doped NPB films by admittance spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Admittance spectroscopy is a powerful tool to determine the carrier mobility. The carrier mobility is a significant parameter to understand the behavior or to optimize the organic light-emitting diode or other organic semiconductor devices. Hole transport in phosphorescent dye, bis[2-(9,9-diethyl-9H-fluoren-2-yl)-1-phenyl-1Hbenzoimidazol-N,C3] iridium(acetylacetonate [(fbi)2Ir(acac)]) doped into N,N-diphenyl-N,N-bis(1-naphthylphenyl)-1,1-biphenyl-4,4-diamine (NPB) films was investigated by admittance spectroscopy. The results show that doped (fbi)2Ir(acac) molecules behave as hole traps in NPB, and lower the hole mobility. For thicker films(≳300 nm), the electric field dependence of hole mobility is as expected positive, i.e., the mobility increases exponentially with the electric field. However, for thinner films (≲300 nm), the electric field dependence of hole mobility is negative, i.e., the hole mobility decreases exponentially with the electric field. Physical mechanisms behind the negative field dependence of hole mobility are discussed. In addition, three frequency regions were divided to analyze the behaviors of the capacitance in the hole-only device and the physical mechanism was explained by trap theory and the parasitic capacitance effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.K. Tsung, S.K. So, J. Appl. Phys. 106, 083710 (2009)

    Article  ADS  Google Scholar 

  2. W. Huang, J. Peng, L. Wang, J. Wang, Y. Cao, Appl. Phys. Lett. 92, 013308 (2008)

    Article  ADS  Google Scholar 

  3. M. Schmeits, J. Appl. Phys. 101, 084508 (2007)

    Article  ADS  Google Scholar 

  4. Á. Pitarch, G. Garcia-Belmonte, J. Bisquert, J. Appl. Phys. 100, 084502 (2006)

    Article  ADS  Google Scholar 

  5. I.H. Campbell, D.L. Smith, J.P. Ferraris, Appl. Phys. Lett. 66, 22 (1995)

    Article  Google Scholar 

  6. M. Meier, S. Karg, W. Riess, J. Appl. Phys. 82, 4 (1997)

    Article  Google Scholar 

  7. A.E.H. Bekkali, I. Thurzo, T.U. Kampen, D.R.T. Zahn, Appl. Surf. Sci. 234, 149–154 (2004)

    Article  ADS  Google Scholar 

  8. T. Okachi, T. Nagase, T. Kobayashi, H. Naito, Appl. Phys. Lett. 94, 043301 (2009)

    Article  ADS  Google Scholar 

  9. S.C. Tse, K.K. Tsung, S.K. So, Appl. Phys. Lett. 90, 213502 (2007)

    Article  ADS  Google Scholar 

  10. W.X. Li, J. Hagen, R. Jones, J. Heikenfeld, A.J. Steckl, Solid-State Electron. 51, 500–504 (2007)

    Article  ADS  Google Scholar 

  11. D. Curiel, Miriam M´as-Montoya, C.H. Chang, P.Y. Chen, C.W. Tai, A. Tarraga, J. Mater. Chem. C. 1, 3421–3429 (2013)

    Article  Google Scholar 

  12. M. Li, W. Li, J. Niu, B. Chu, B. Li, X. Sun, Z. Zhang, H. Zhizhi, Solid-State Electron. 49, 1956–1960 (2005)

    Article  ADS  Google Scholar 

  13. K.K. Tsung, S.K. So, Appl. Phys. Lett. 92, 103315 (2008)

    Article  ADS  Google Scholar 

  14. K.L. Tong, S.W. Tsang, K.K. Tsung, S.C. Tse, S.K. So, J. Appl. Phys. 102, 093705 (2007)

    Article  ADS  Google Scholar 

  15. B. Li, J. Chen, Y. Zhao, D. Yang, D. Ma, Org. Electron. 12, 974–979 (2011)

    Article  Google Scholar 

  16. M. Hoping, C. Schildknecht, H. Gargouri, T. Riedl, M. Tilgner, H.–H. Johannes, W. Kowalsky, Appl. Phys. Lett. 92, 213306 (2008)

    Article  ADS  Google Scholar 

  17. J. Ding, D. Ma, Y. Cheng, L. Wang, X. Jing, F. Wang, Adv. Funct. Mater. 18, 1–12 (2008)

    Google Scholar 

  18. I. Murtaza, I. Qazi, K.S. Karimov, M.H. Sayyad, Phys. B 406, 1238–1241 (2011)

    Article  ADS  Google Scholar 

  19. S.W. Tsang, S.K. So, J.B. Xu, J. Appl. Phys. 99, 013706 (2006)

    Article  ADS  Google Scholar 

  20. A.K. Tripathi, A. Ashish, Y.N. Mohapatra, Org. Electron. 11, 1753–1758 (2010)

    Article  Google Scholar 

  21. A.J. Mozer, N.S. Sariciftci, A. Pivrikas, R. Österbacka, G. Juška, L. Brassat, H. Bässler, Phy. Rev. B 71, 035214 (2005)

    Article  ADS  Google Scholar 

  22. A.J. Mozer, N.S. Sariciftci, Chem. Phy. Lett. 389, 438–442 (2004)

    Article  ADS  Google Scholar 

  23. S. Albrecht, W. Schindler, J. Kurpiers, J. Kniepert, J.C. Blakesley, I. Dumsch, S. Allard, K. Fostiropoulos, U. Scherf, D. Neher, J. Phys. Chem. Lett. 3, 640–645 (2012)

    Article  Google Scholar 

  24. Ta-Ya. Chu, Ok-Keun Song, J. Appl. Phys. 104, 023711 (2008)

    Article  ADS  Google Scholar 

  25. M.T. Hsieh, M.H. Ho, K.H. Lin, J.F. Chen, T.M. Chen, C.H. Chen, Appl. Phys. Lett. 96, 133310 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dezhi Yang, Kai Xu et al. for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Chen, J., Huang, J. et al. Hole transport characteristics in phosphorescent dye-doped NPB films by admittance spectroscopy. Appl. Phys. A 117, 1125–1130 (2014). https://doi.org/10.1007/s00339-014-8478-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8478-0

Keywords

Navigation