Skip to main content
Log in

Electron photoemission in plasmonic nanoparticle arrays: analysis of collective resonances and embedding effects

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We theoretically study the characteristics of photoelectron emission in plasmonic nanoparticle arrays. Nanoparticles are partially embedded in a semiconductor, forming Schottky barriers at metal/semiconductor interfaces through which photoelectrons can tunnel from the nanoparticle into the semiconductor; photodetection in the infrared range, where photon energies are below the semiconductor band gap (insufficient for band-to-band absorption in semiconductor), is therefore possible. The nanoparticles are arranged in a sparse rectangular lattice so that the wavelength of the lattice-induced Rayleigh anomalies can overlap the wavelength of the localized surface plasmon resonance of the individual particles, bringing about collective effects from the nanoparticle array. Using full-wave numerical simulations, we analyze the effects of lattice constant, embedding depth, and refractive index step between the semiconductor layer and an adjacent transparent conductive oxide layer. We show that the presence of refractive index mismatch between media surrounding the nanoparticles disrupts the formation of a narrow absorption peak associated with the Rayleigh anomaly, so the role of collective lattice effects in the formation of plasmonic resonance is diminished. We also show that 5–20 times increase of photoemission can be achieved on embedding of nanoparticles without taking into account dynamics of ballistic electrons. The results obtained can be used to increase efficiency of plasmon-based photodetectors and photovoltaic devices. The results may provide clues to designing an experiment where the contributions of surface and volume photoelectric effects to the overall photocurrent would be defined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.R. Catchpole, A. Polman, Opt. Express 16, 21793–21800 (2008)

    Article  ADS  Google Scholar 

  2. H. Atwater, A. Polman, Nat. Mater. 9, 205 (2010)

    Article  ADS  Google Scholar 

  3. K.R. Catchpole, S. Mokkapati, F. Beck, E.-C. Wang, A. McKinley, A. Basch, J. Lee, MRS Bull 36, 461–467 (2011)

    Article  Google Scholar 

  4. A. Pors, A.V. Uskov, M. Willatzen, I.E. Protsenko, Optics Commun 284, 2226–2229 (2011)

    Article  ADS  Google Scholar 

  5. Y. Nishijima, K. Ueno, Y. Yokota, Kei Murakoshi, H. Misawa, J. Phys. Chem. Lett. 1, 2031–2036 (2010)

    Article  Google Scholar 

  6. Y. Takahashi, T. Tatsuma, Appl. Phys. Lett. 99, 182110 (2011)

    Article  ADS  Google Scholar 

  7. M.W. Knight, H. Sobhani, P. Nordlander, N.J. Halas, Science 332, 702 (2011)

    Article  ADS  Google Scholar 

  8. I.E. Protsenko, A.V. Uskov, Phys. Usp. 55, 508 (2012)

    Article  ADS  Google Scholar 

  9. E.A. Moulin, U.W. Paetzold, B.E. Pieters, W. Reetz, R. Carius, J. Appl. Phys. 113, 144501 (2013)

    Article  ADS  Google Scholar 

  10. M.W. Knight, Y. Wang, A.S. Urban, A. Sobhani, B.Y. Zheng, P. Nordlander, N.J. Halas, Nano Lett. 13, 1687–1692 (2013)

    Google Scholar 

  11. A. Sobhani, M.W. Knight, Y. Wang, B. Zheng, N.S. King, L.V. Brown, Z. Fang, P. Nordlander, N.J. Halas, Nature Comm. 4, 1643 (2013)

    Article  ADS  Google Scholar 

  12. E. Moulin, P. Luo, B. Pieters, J. Sukmanowski, J. Kirchhoff, W. Reetz, T. Müller, R. Carius, F.-X. Royer, H. Stiebig, Appl. Phys. Lett. 95, 033505 (2009)

    Article  ADS  Google Scholar 

  13. P. Spinelli, M. Hebbink, R. de Waele, L. Black, F. Lenzmann, A. Polman, Nano Lett. 11, 1760–1765 (2011)

    Article  ADS  Google Scholar 

  14. T.P. White, K.R. Catchpole, Appl. Phys. Lett. 101, 073905 (2012)

    Article  ADS  Google Scholar 

  15. F.B. Atar, E. Battal, L.E. Aygun, B. Daglar, M. Bayindir, A.K. Okyay, Opt. Express 21, 7196 (2013)

    Article  ADS  Google Scholar 

  16. A. Novitsky, A.V. Uskov, C. Gritti, I.E. Protsenko, B.E. Kardynał, A.V. Lavrinenko, Prog. Photovolt.: Res. Appl. 22, 422–426 (2014)

  17. H. Chalabi, M.L. Brongersma, Nat. Nanotechnol. 8, 229–230 (2013)

    Article  ADS  Google Scholar 

  18. R.H. Fowler, Phys. Rev. 38, 45 (1931)

    Article  ADS  Google Scholar 

  19. I. Tamm, S. Schubin, Zeitschrift für Physik 68, 97–113 (1931)

    Article  ADS  MATH  Google Scholar 

  20. K. Mitchell, Proceedings of the Royal Society of London. Series A, containing papers of a mathematical and physical character 146, 442–464 (1934)

  21. J.G. Endriz, W.E. Spicer, Phys. Rev. Lett. 27, 570 (1971)

    Article  ADS  Google Scholar 

  22. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. Wiley, Hoboken, NJ, ed. 3, 2007

  23. K.W. Frese Jr, C. Chen, J. Electrochem. Soc. 139, 3234 (1992)

    Article  Google Scholar 

  24. A.M. Brodsky, Y.Y. Gurevich, Sov. Phys. JETP 27, 114–121 (1968)

    ADS  Google Scholar 

  25. A.M. Brodsky, Y.Y. Gurevich, Theory of Electron Emission from Metals (Nauka, Moscow, 1973)

    Google Scholar 

  26. S. Zou, N. Janel, G.C. Schatz, J. Chem. Phys. 120, 10871 (2004)

    ADS  Google Scholar 

  27. V.A. Markel, J. Phys. B: Atom. Mol. Opt. Phys. 38, L115 (2005)

    Article  ADS  Google Scholar 

  28. S. Zou, G.C. Schatz, Nanotechnology 17, 2813–2820 (2006)

    Article  ADS  Google Scholar 

  29. B. Auguie, W.L. Barnes, Phys. Rev. Lett. 101, 143902 (2008)

    Article  ADS  Google Scholar 

  30. S.R.K. Rodriguez, A. Abass, B. Maes, O.T.A. Janssen, G. Vecchi, J. Gómez Rivas, Phys. Rev. X 1, 021019 (2011)

    Google Scholar 

  31. A.G. Nikitin, A.V. Kabashin, H. Dallaporta, Opt. Express 20, 27941 (2012)

    Article  ADS  Google Scholar 

  32. W. Zhou, T. Odom, Nat. Nanotech. 6, 423 (2011)

    Article  ADS  Google Scholar 

  33. G. Vecchi, V. Giannini, J. Gómez Rivas, Phys.Rev. B 80, 201401 (2009)

    Article  ADS  Google Scholar 

  34. P. Offermans, M.C. Schaafsma, S.R.K. Rodriguez, Y. Zhang, M. Crego-Calama, S.H. Brongersma, J. Gómez Rivas, ACS Nano 5, 5151–5157 (2011)

    Article  Google Scholar 

  35. S.R.K. Rodriguez, G. Lozano, M.A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, J. Gómez Rivas, Appl. Phys. Lett 100, 111103 (2012)

    Article  ADS  Google Scholar 

  36. G. Lozano, D.J. Louwers, S.R.K. Rodríguez, S. Murai, O.T.A. Jansen, M.A. Verschuuren, J. Gómez Rivas, Light: Sci App 2, e66 (2013)

    Article  Google Scholar 

  37. C. Uhrenfeldt, T.F. Villesen, B. Johansen, J. Jung, T.G. Pedersen, A. Nylandsted Larsen. Opt. Express 21, A774–A785 (2013)

    Article  ADS  Google Scholar 

  38. S.V. Zhukovsky, V.E. Babicheva, A.V. Uskov, I.E. Protsenko, A.V. Lavrinenko, Plasmonics 9, 283–289 (2014)

  39. C.R. Simovski, D.K. Morits, P.M. Voroshilov, M.E. Guzhva, P.A. Belov, Yu.S. Kivshar, Opt. Express 21, A714–A725 (2013)

    Article  ADS  Google Scholar 

  40. A. Hessel, A.A. Oliner, Appl. Opt. 4, 1275–1297 (1965)

    Article  ADS  Google Scholar 

  41. S.R.K. Rodriguez, M.C. Schaafsma, A. Berrier, J. Gómez Rivas, Physica B: Cond. Matter 407, 4081–4085 (2012)

    Article  Google Scholar 

  42. E.M. Hicks, S. Zou, G.C. Schatz, K.G. Spears, R.P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, M. Käll, Nano Lett. 5, 1065–1070 (2005)

    Article  ADS  Google Scholar 

  43. B. Auguié, X.M. Bendaña, W.L. Barnes, F.J. García de Abajo, Phys. Rev. B 82, 155447 (2010)

    Article  ADS  Google Scholar 

  44. C. Scales, P. Berini, IEEE J. Quant. Electron. 46, 633–643 (2010)

    Article  ADS  Google Scholar 

  45. A.O. Govorov, H. Zhang, Y.K. Gun’ko, J. Phys. Chem. C 117, 16616–16631 (2013)

    Article  Google Scholar 

  46. A.V. Uskov, I.E. Protsenko, R.Sh. Ikhsanov, V.E. Babicheva, S.V. Zhukovsky, A.V. Lavrinenko, E.P. O’Reilly, H. Xu, Nanoscale 6, 4716–4727 (2014)

  47. A. Schenk, G. Heiser, J. Appl. Phys. 81, 7900 (1997)

    Article  ADS  Google Scholar 

  48. M.A. Ordal, R.J. Bell, R.W. Alexander Jr, L.L. Long, M.R. Querry, Appl. Opt. 24, 4493 (1985)

    Article  ADS  Google Scholar 

  49. CST Microwave Studio, http://www.cst.com/

  50. S.V. Zhukovsky, V.E. Babicheva, A.B. Evlyukhin, I.E. Protsenko, A.V. Lavrinenko, A.V. Uskov, http://arxiv.org/abs/1312.2428

Download references

Acknowledgments

S.V.Z. acknowledges financial support from the People Programme (Marie Curie Actions) of the European Union’s 7th Framework Programme FP7-PEOPLE-2011-IIF under REA grant agreement No. 302009 (Project HyPHONE). V.E.B. acknowledges financial support from Otto Mønsteds, Kaj og Hermilla Ostenfeld, and Thomas B. Thriges foundations. I.E.P. and A.V.U. acknowledge support from the Russian MSE State Contract N14.527.11.0002 and from the CASE project (Denmark).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei V. Zhukovsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukovsky, S.V., Babicheva, V.E., Uskov, A.V. et al. Electron photoemission in plasmonic nanoparticle arrays: analysis of collective resonances and embedding effects. Appl. Phys. A 116, 929–940 (2014). https://doi.org/10.1007/s00339-014-8464-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8464-6

Keywords

Navigation