Skip to main content
Log in

Dual metamaterial structures generated from an one-step fabrication using stencil lithography

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The flexibility to deposit metallic structures on any substrates without the need of lift-off or etching process are the main reasons for the recent popularity of using stencil lithography for plasmonic applications. In this work, we fabricate nanoholes on a Si3N4 membrane and deposit metal–dielectric layers and such approach allows us to have a perforated fishnet metamaterial structure on the membrane as well as its complementary pillar structure on a quartz substrate. We then studied and compared their optical properties from both experiment and simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. N. Liu, H. Liu, S. Zhu, H. Giessen, Stereometamaterials. Nat. Photon. 3, 157–162 (2009)

    Article  ADS  Google Scholar 

  2. S. Xiao, V.P. Drachev, A.V. Kildishev, X. Ni, U.K. Chettiar, H.-K. Yuan, V.M. Shalaev, Loss-free and active optical negative-index metamaterials. Nature 466, 735–738 (2010)

    Article  ADS  Google Scholar 

  3. S. Larouche, Y.-J. Tsai, T. Tyler, N.M. Jokerst, D.R. Smith, Infrared metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012)

    ADS  Google Scholar 

  4. W. Cai, U.K. Chettiar, H.-K. Yuan, V.C. de Silva, A.V. Kildishev, V.P. Drachev, V.M. Shalaev, Metamagnetics with rainbow colors. Opt. Express 15, 3333–3341 (2007)

    Article  ADS  Google Scholar 

  5. E.S.P. Leong, Y.J. Liu, C.C. Chum, J.H. Teng, Optical magnetic resonances in subwavelength Ag-MgF2-Ag grating structures. Plasmonics 8, 1221–1226 (2013)

    Article  Google Scholar 

  6. T. Kraus, L. Malaquin, H. Schmid, W. Riess, N.D. Spencer, H. Wolf, Nanoparticle printing with single-particle resolution. Nat. Nanotech. 2, 570–576 (2007)

    ADS  Google Scholar 

  7. Z.Y. Cai, Y.J. Liu, E.S.P. Leong, J.H. Teng, X.M. Lu, Highly ordered and gap controllable two-dimensional non-close-packed colloidal crystals and plasmonic-photonic crystals with enhanced optical transmission. J. Mater. Chem. 22, 24668–24675 (2012)

    Google Scholar 

  8. Z.Y. Cai, Y.J. Liu, J.H. Teng, X.M. Lu, Fabrication of large domain crack-free colloidal crystal heterostructures with superposition bandgaps using hydrophobic polystyrene spheres. ACS Appl. Mater. Interfaces 4, 5562–5569 (2012)

    Google Scholar 

  9. Z.Y. Cai, Y.J. Liu, X.M. Lu, J.H. Teng, In situ “doping” inverse silica opals with size-controllable gold nanoparticles for refractive index sensing. J. Phys. Chem. C 117, 9440–9445 (2013)

    Google Scholar 

  10. D. Chanda, K. Shigeta, S. Gupta, T. Cain, A. Carlson, A. Mihi, A.J. Baca, G.R. Bogart, P. Braun, J.A. Rogers, Large-area flexible 3D optical negative index metamaterial formed by nanotransfer printing. Nat. Nanotech. 6, 402–407 (2011)

    ADS  Google Scholar 

  11. S.Y. Yew, T.S. Kustandi, H.Y. Low, J.H. Teng, Y.J. Liu, E.S.P. Leong, Single-material-based multilayered nanostructures fabrication via reverse thermal nanoimprinting. Microelectron. Eng. 88, 2946–2950 (2011)

    Google Scholar 

  12. Y.J. Liu, W.W. Loh, E.S.P. Leong, T.S. Kustandi, X.W. Sun, J.H. Teng, Nanoimprinted ultrafine line and space nanogratings for liquid crystal alignment. Nanotechnology 23, 465302 (2012)

    ADS  Google Scholar 

  13. E.S.P. Leong, S.Y. Yew, T.S. Kustandi, Y.J. Liu, H. Tanoto, Q.Y. Wu, W.W. Loh, S.L. Teo, J.H. Teng, New approach for multilayered microstructures fabrication based on a water-soluble backing substrate. ACS Appl. Mater. Interfaces 5, 5898–5902 (2013)

    Google Scholar 

  14. Y.J. Liu, G.Y. Si, E.S.P. Leong, N. Xiang, A.J. Danner, J.H. Teng, Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays. Adv. Mater. 24, OP131–OP135 (2012)

    Google Scholar 

  15. Y.J. Liu, G.Y. Si, E.S.P. Leong, B. Wang, A.J. Danner, X.C. Yuan, J.H. Teng, Optically tunable plasmonic color filters. Appl. Phys. A 107, 49–54 (2012)

    ADS  Google Scholar 

  16. G.Y. Si, Y.H. Zhao, J.T. Lv, M.Q. Lu, F.W. Wang, H.L. Liu, N. Xiang, T.J. Huang, A.J. Danner, J.H. Teng, Y.J. Liu, Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays. Nanoscale 5, 6243–6248 (2013)

    ADS  Google Scholar 

  17. G.Y. Si, Y.H. Zhao, J.T. Lv, F.W. Wang, H.L. Liu, J.H. Teng, Y.J. Liu, Direct and accurate patterning of plasmonic nanostructures with ultrasmall gaps. Nanoscale 5, 4309–4313 (2013)

    ADS  Google Scholar 

  18. M.M. Deshmukh, D.C. Ralph, M. Thomas, J. Silcox, Nanofabrication using a stencil mask. Appl. Phys. Lett. 75, 1631–1633 (1999)

    ADS  Google Scholar 

  19. A.A. Patel, C.P. Fucetola, E.E. Moon, H.I. Smith, 3D fabrication by stacking prepatterned, rigidly held membranes. J. Vac. Sci. Technol. B 29, 06F402-1–06F402-3 (2011)

    Google Scholar 

  20. O. Vazquez-Mena, G. Villanueva, V. Savu, K. Sidler, M.A.F. van den Boogaart, J. Brugger, Metallic nanowires by full wafer stencil lithography. Nano Lett. 8, 3675–3682 (2008)

    ADS  Google Scholar 

  21. O. Vazquez-Mena, T. Sannomiya, L.G. Villanueva, J. Voros, J. Brugger, Metallic nanodot arrays by stencil lithography for plasmonic biosensing applications. ACS Nano 5, 844–853 (2011)

    Google Scholar 

  22. O. Vazquez-Mena, T. Sannomiya, M. Tosun, L.G. Villanueva, V. Savu, J. Voros, J. Brugger, High-resolution resistless nanopatterning on polymer and flexible substrates for plasmonic biosensing using stencil masks. ACS Nano 6, 5474–5481 (2012)

    Google Scholar 

  23. H. Tao, J.J. Amsden, A.C. Strikwerda, K. Fan, D.L. Kaplan, X. Zhang, R.D. Averitt, F.G. Omenetto, Metamaterial silk composites at terahertz frequencies. Adv. Mater. 22, 3527–3531 (2010)

    Google Scholar 

  24. S. Xiao, U.K. Chettiar, A.V. Kildishev, V.P. Drachev, V.M. Shalaev, Yellow-light negative-index metamaterials. Opt. Lett. 34, 3478–3480 (2009)

    Google Scholar 

  25. N. Liu, L.W. Fu, S. Kaiser, H. Schweizer, H. Giessen, Plasmonic building blocks for magnetic molecules in three-dimensional optical metamaterials. Adv. Mater. 20, 3859–3865 (2008)

    Google Scholar 

  26. T. Li, H. Liu, F.M. Wang, Z.G. Dong, S.N. Zhu, X. Zhang, Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission. Opt. Express 14, 11155–11163 (2006)

    ADS  Google Scholar 

  27. H. Liu, D.A. Genov, D.M. Wu, Y.M. Liu, Z.W. Liu, C. Sun, S.N. Zhu, X. Zhang, Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures. Phys. Rev. B 76, 073101 (2007)

    ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Agency for Science, Technology and Research (A*STAR), under the Grant No. 0921540099 and 0921540098.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eunice S. P. Leong or J. H. Teng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leong, E.S.P., Deng, J., Liu, Y.J. et al. Dual metamaterial structures generated from an one-step fabrication using stencil lithography. Appl. Phys. A 116, 907–912 (2014). https://doi.org/10.1007/s00339-014-8461-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8461-9

Keywords

Navigation