Advertisement

Applied Physics A

, Volume 117, Issue 2, pp 877–890 | Cite as

A new nano-structured Ni(II) Schiff base complex: synthesis, characterization, optical band gaps, and biological activity

  • M. M. Rashad
  • A. M. Hassan
  • A. M. Nassar
  • N. M. Ibrahim
  • A. MourtadaEmail author
Article

Abstract

New Ni(II) Schiff base complexes [{Ni(L)(H2O)Cl} where HL = 2-((pyridin-3-ylmethylene)amino)phenol] have been synthesized using the reflux and sonochemical methods. The nickel oxide NiO nanopowder was obtained from the metal complexes after calcination at 650 °C for 2 h. The Schiff base complexes and NiO powders were characterized in detail. The HL and its metal complexes were depicted high activity towards microorganism and breast carcinoma cells. The inhibitory activity against breast carcinoma (MCF-7) were detected with IC50 = 5.5, 12.5 and 9.6 for HL, complex (1) and complex (2), respectively. The optical band gap energy was 3.6, 3.0 and 2.37 eV for Ni complexes (1), (2) and NiO, respectively. The microstructure of the formed NiO powders appeared as cubic-like structure. Furthermore, magnetic properties of NiO sample were identified and paramagnetic property was found at a room temperature. The saturation magnetization and coercive force for the NiO sample were 0.47 emu/g and 42.68 Oe, respectively.

Keywords

Schiff Base Schiff Base Ligand Nickel Complex Schiff Base Complex Sonochemical Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.S. Gaballa, M.S. Asker, A.S. Barakat, S.M. Teleb, Specrochimica. Acta. Part A 67, 114 (2007)CrossRefADSGoogle Scholar
  2. 2.
    L. Shi, H.M. Ge, S.H. Tan, H.Q. Li, Y.C. Song, H.L. Zhu, R.X. Tan, Eur. J. Med. Chem. 42, 558 (2007)CrossRefGoogle Scholar
  3. 3.
    J. Lv, T. Liu, S. Cai, X. Wang, L. Lu, Y. Wang, J. Inorg. Biochem. 100, 1888 (2006)CrossRefGoogle Scholar
  4. 4.
    L.A. Saghatforoush, A. Aminkhani, F. Chalabian, Transit. Met. Chem. 34, 899 (2009)CrossRefGoogle Scholar
  5. 5.
    L.A. Saghatforoush, F. Chalabian, A. Aminkhani, G. Karimnezhad, S. Ershad, Eur. J. Med. Chem. 44, 4490 (2009)CrossRefGoogle Scholar
  6. 6.
    A. Pui, C. Policar, J.P. Mahy, Inorg. Chem. Acta. 360, 2139 (2007)CrossRefGoogle Scholar
  7. 7.
    P. Panneerselvam, R.R. Nair, G. Vijayalakshmi, E.H. Subramanian, S.K. Sridhar, Eur. J. Med. Chem. 40, 225 (2005)CrossRefGoogle Scholar
  8. 8.
    M. Amirnasr, A.H. Mahmoudkhani, A. Gorji, S. Dehghanpour, H.R. Bijanzadeh, Polyhedron 21, 2733 (2002)CrossRefGoogle Scholar
  9. 9.
    D. Arish, M. Sivasankaran Nair, Spectrochim. Acta Part A 82, 191 (2011)CrossRefADSGoogle Scholar
  10. 10.
    P.A. Vigato, S. Tanburini, Coord. Chem. Rev. 248, 1717 (2004)CrossRefGoogle Scholar
  11. 11.
    R. Hernanddez-Molina, A. Mederos, vol 2 (Pergamon Press: New York, 2004), p. 411Google Scholar
  12. 12.
    S. Rayati, S. Zakavi, M. Koliaei, A. Wojtczak, A. Kozakiewicz, Inorg. Chem. Commun. 13, 203 (2010)CrossRefGoogle Scholar
  13. 13.
    H. H. Nalwa (Academic Press, Boston, 2000), pp. 1–5Google Scholar
  14. 14.
    A. Morsali, H. Hossieni Monfared, A. Morsali, Inorg. Chim. Acta 362, 3427 (2009)CrossRefGoogle Scholar
  15. 15.
    A. Askarinezhad, A. Morsali, Mater. Lett. 62, 478 (2008)CrossRefGoogle Scholar
  16. 16.
    Y. Mu, J. Yang, S. Han, H. Hou, Y. Fan, Mater. Lett. 64, 1287 (2010)CrossRefGoogle Scholar
  17. 17.
    K. Liu, H.P. You, G. Jia, Y.H. Zheng, Y.H. Song, M. Yang, Y.J. Huang, H.J. Zhang, Cryst. Growth Des. 9, 3519 (2009)CrossRefGoogle Scholar
  18. 18.
    K.S. Suslick, S.B. Choe, A.A. Cichowlas, M.W. Grinstaff, Nature 353, 414 (1991)CrossRefADSGoogle Scholar
  19. 19.
    A. Aslani, A. Morsali, V.T. Yilmaz, C. Kazak, Mol. Struct. 929, 187 (2009)CrossRefADSGoogle Scholar
  20. 20.
    A.M. Hassan, A.M. Nassar, N.M. Ibrahim, A.M. Elsaman, M.M. Rashad, J Coord. Chem. 66(24), 4387 (2013)CrossRefGoogle Scholar
  21. 21.
    H. Yang, Q. Tao, X. Zhang, A. Tang, J. Ouyang, J. Alloys Compd. 459, 98 (2008)CrossRefGoogle Scholar
  22. 22.
    C.D. Guerra, A. Remn, J.A. Garcia, J. Piqueras, Phys. Status Solidi 163, 497 (1997)CrossRefADSGoogle Scholar
  23. 23.
    J. Bahadur, D. Sen, S. Mazumder, S. Ramanathan, J. Solid State Chem. 181, 1227 (2008)CrossRefADSGoogle Scholar
  24. 24.
    T. Nathan, A. Aziz, A.F. Noor, S.R.S. Prabaharan, J. Solid State Electrochem. 12, 1003 (2008)CrossRefGoogle Scholar
  25. 25.
    C.G. Granqvist (ed.), Handbook of inorganic electrochromic materials (Elsevier, Amsterdam, 1995)Google Scholar
  26. 26.
    I. Hotovy, J. Huran, L. Spiess, S. Hascik, V. Rehacek, Sens. Actuators B 57, 147 (1999)CrossRefGoogle Scholar
  27. 27.
    D.D. Perrin, WLF Armarego Purification of laboratory chemicals, 3rd edn., vol 68 (Pergamon, Oxford, (1980) p. 174Google Scholar
  28. 28.
    A. E. Shalan, M. M. Rashad, Youhai Yu, Mónica Lira-Cantú, M. S. A. Abdel-Mottaleb, Appl. Phys. A 110, 111 (2013)Google Scholar
  29. 29.
    M.M. Rashad, A.O. Turky, A.T. Kandil, J. Mater. Sci.: Mater. Electron. 24, 3284 (2013)Google Scholar
  30. 30.
    K. Colladet, M. Nicolas, L. Goris, L. Lutsen, D. Vanderzande, Thin Solid Films 7, 451 (2004)Google Scholar
  31. 31.
    S.A. Ali, A.A. Soliman, M.M. Aboaly, R.M. Ramadan, J. Coord. Chem 55, 1161 (2002)CrossRefGoogle Scholar
  32. 32.
    H.A. Abdel-Kader, S.R. Seddkey, Assist. Veter. Med. J. 34, 67 (1995)Google Scholar
  33. 33.
    P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. Mahon, D. Vistica, J.T. Warren, H. Bokesch, S. Kenney, M.R. Boyd, J Natl. Cancer Inst 13, 1107 (1990)CrossRefGoogle Scholar
  34. 34.
    H. Ünver, Z. Hayvali, Spectrochim. Acta Part A 75, 782 (2010)CrossRefADSGoogle Scholar
  35. 35.
    S. Chandra, U. Kumar, Spectrochim. Acta A 62, 940 (2005)CrossRefADSGoogle Scholar
  36. 36.
    L.J. Bellamy, The infrared spectra of complex molecules (Chapman and Hall, London, 1978)Google Scholar
  37. 37.
    K. Bahgat, A.S. Orabi, Polyhedron 21, 987 (2002)CrossRefGoogle Scholar
  38. 38.
    S.E.J. Bell, N.M.S. Sirimuthu, Chem. Soc. Rev. 37, 1012 (2008)CrossRefGoogle Scholar
  39. 39.
    M.R. Kagan, R.L. McCreery, Anal. Chem. 66(23), 4159 (1994)CrossRefGoogle Scholar
  40. 40.
    A.A. Del Paggio, D.R. McMillin, Inorg. Chem. 22, 691 (1983)CrossRefGoogle Scholar
  41. 41.
    M. El-behery, H. El-twigry, Spectrichim Acta A 66, 28 (2007)CrossRefADSGoogle Scholar
  42. 42.
    S.R. Patil, U.N. Kantank, D.N. Sen, Inorg. Chim. Acta 63, 261 (1982)CrossRefGoogle Scholar
  43. 43.
    Y. Shirota, J. Mater. Chem. 10, 1 (2000)CrossRefGoogle Scholar
  44. 44.
    C.K. Lai, C.-H. Chang, C.-H. Tsai, J. Mater. Chem. 8, 599 (1998)CrossRefGoogle Scholar
  45. 45.
    K. Raja, P.S. Ramesh, D. Geetha, Spectrochim. Acta Part A 120, 19 (2014)CrossRefGoogle Scholar
  46. 46.
    M.M. Rashad, Z.I. Zaki, H. El-Shall, J. Mater. Sci. 44, 2992 (2009)CrossRefADSGoogle Scholar
  47. 47.
    M. Cazacu, M. Marcu, A. Vlad, G.I. Rusu, M. Avadanei, J. Organomet. Chem. 689, 3005 (2004)CrossRefGoogle Scholar
  48. 48.
    Z.W. Zhao, K. Konstantinov, L. Yuan, H.K. Liu, S.X. Dou, J Nanosci Nanotechnol 4, 861 (2004)CrossRefGoogle Scholar
  49. 49.
    H. Klug, L. Alexander (eds.), X-ray diffraction procedures (Wiley, New York, 1962), p. 125Google Scholar
  50. 50.
    Y. Shimomura, I. Tsubokawa, M. Kojima, J. Phys. Soc. Jpn. 9, 521 (1954)CrossRefADSGoogle Scholar
  51. 51.
    S.A. Makhlouf, F.T. Parker, F.E. Spada, A.E. Berkowitz, J. Appl. Phys. 81, 5561 (1997)CrossRefADSGoogle Scholar
  52. 52.
    C.J. Yang, A. Jenekhe, Macromolecules 28, 1180 (1995)CrossRefADSGoogle Scholar
  53. 53.
    Y.X. Yao, Q.T. Zhang, J.M. Tour, Macromolecules 31, 8600 (1998)CrossRefADSGoogle Scholar
  54. 54.
    G.D. Sharma, S.G. Sandogaker, M.S. Roy, Thin Solid Films 278, 129 (2004)CrossRefGoogle Scholar
  55. 55.
    X.T. Tao, H. Suzuki, T. Watanabe, S.H. Lee, S. Miyata, H. Sasabe, Appl. Phys. Lett. 70, 1503 (1997)CrossRefADSGoogle Scholar
  56. 56.
    M.L. Fu, G.C. Guo, X. Liu, L.Z. Cai, J.S. Huang, Inorg. Chem. Commun. 8, 18 (2005)CrossRefGoogle Scholar
  57. 57.
    P.G. Lawrence, P.L. Harold, O.G. Francis, Antibiot. Chemother. 5, 1597 (1980)Google Scholar
  58. 58.
    S.K. Sengupta, O.P. Pandey, B.K. Srivastava, V.K. Sharma, Transit. Met. Chem. 23, 349 (1998)CrossRefGoogle Scholar
  59. 59.
    E.R. Jmieson, S.J. Lippard, Chem. Rev. 99, 2467 (1999)CrossRefGoogle Scholar
  60. 60.
    S.E. Miller, D.A. House, Inorg. Chim. Acta 187, 125 (1991)CrossRefGoogle Scholar
  61. 61.
    S.P. Binks, M. Dobrota, Biochem. Pharmacol. 40, 1329 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. M. Rashad
    • 1
  • A. M. Hassan
    • 2
  • A. M. Nassar
    • 2
  • N. M. Ibrahim
    • 3
  • A. Mourtada
    • 1
    Email author
  1. 1.Central Metallurgical Research and Development Institute (CMRDI)CairoEgypt
  2. 2.Chemistry Department, Faculty of ScienceAl-azhar UniversityCairoEgypt
  3. 3.Department of Organometallic and Organometalloid Chemistry, National Research CentreCairoEgypt

Personalised recommendations