Skip to main content
Log in

Photoelectron spectroscopy of size-selected cluster ions using synchrotron radiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A new experimental setup for photoelectron spectroscopy of size-selected cluster ions using synchrotron VUV radiation as generated by the Swiss Light Source is presented. An intense positively charged cluster ion beam is produced in a high-intensity magnetron sputter source. The clusters are subsequently mass selected in a sector magnet. To maximize the residence time of the cluster ions in the ionization region of the velocity map imaging spectrometer, the cluster ion beam is decelerated where it crosses the light beam. First experiments on (MoO3) + n (n = 69 and 59) cluster cations show that the approach is capable of delivering photoelectron spectra of size-selected transition metal cluster ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Hüfner, Photoelectron Spectroscopy (Springer, 2003)

  2. R.L. Johnston, Atomic and Molecular Clusters (Taylor and Francis, 2002)

  3. C. Zhang, T. Andersson, O. Björneholm, X. Xiaojun, M. Tchaplyguine, Z. Liu, J. Phys. Chem. C 117, 14390 (2013)

    Article  Google Scholar 

  4. L. Partanen, M.-H. Mikkelä, M. Huttula, M. Tchaplyguine, C. Zhang, T. Andersson, O. Björneholm, J. Chem. Phys. 138, 044301 (2013)

    Article  ADS  Google Scholar 

  5. W. Xiong, D.D. Hickstein, K.J. Schnitzenbaumer, J.L. Ellis, B.B. Palm, K.E. Keister, C. Ding, L. Miaja-Avila, G. Dukovic, J.L. Jimenez, M.M. Murnane, H.C. Kapteyn, Nano Lett. 13, 2924–2930 (2013)

    Article  ADS  Google Scholar 

  6. U. Landman, B. Yoon, C. Zhang, U. Heiz, M. Arenz, Top. Catal. 44, 145 (2007)

    Article  Google Scholar 

  7. C. Nitsch, C.P. Schulz, A. Gerber, W. Zimmermann-Edling, I.V. Hertel, Z. Phys. D 22, 651–658 (1992)

    Article  ADS  Google Scholar 

  8. V. Stert, W. Radloff, Th Freudenberg, F. Noack, I.V. Hertel, C. Jouvet, C. Dedonder-Lardeux, D. Solgadi, Europhys. Lett. 40(5), 515–520 (1997)

    Article  ADS  Google Scholar 

  9. L. Cordis, G. Ganteför, J. Hesslich, A. Ding, Z. Phys. D 3, 323–327 (1986)

    Article  ADS  Google Scholar 

  10. J. Ho, K.M. Ervin, W.C. Lineberger, J. Chem. Phys. 93, 6987 (1990)

    Article  ADS  Google Scholar 

  11. S.H. Young, C.L. Pettiette, J. Conceicao, O. Cheshnovsky, R.E. Smalley, Chem. Phys. Lett. 139, 233 (1987)

    Article  ADS  Google Scholar 

  12. G. Ganteför, K.H. Meiwes-Broer, H.O. Lutz, Phys. Rev. A 37, 2716–2718 (1988)

    Article  ADS  Google Scholar 

  13. J.V. Coe, J.T. Snodgrass, C.B. Freidhoff, K.M. McHugh, K.H. Bowen, J. Chem. Phys. 83, 3169 (1985)

    Article  ADS  Google Scholar 

  14. M. Astruc Hoffmann, G. Wrigge, B. Issendorf, J. Müller, G. Ganteför, H. Haberland, Eur. Phys. J. D 16, 9 (2001)

    Article  ADS  Google Scholar 

  15. J. Li, X. Li, H.J. Zhai, L.-S. Wang, Science 299, 864 (2003)

    Article  ADS  Google Scholar 

  16. H.J. Zhai, X. Huang, T. Waters, X.B. Wang, R.A.J. O’Hair, A.G. Webb, L.S. Wang, J. Phys. Chem. A 109, 10512 (2005)

    Article  Google Scholar 

  17. M. Willis, M. Götz, A.K. Kandalam, G.F. Ganteför, P. Jena, Angew. Chem. Int. Ed. 49, 8966 (2010)

    Article  Google Scholar 

  18. J. Yang, X.-B. Wang, X.-P. Xing, L.-S. Wang, J. Chem. Phys. 128, 201102 (2008)

    Article  ADS  Google Scholar 

  19. V. Senz, T. Fischer, P. Oelßner, J. Tiggesbäumker, J. Stanzel, C. Bostedt, H. Thomas, M. Schöffler, L. Foucar, M. Martins, J. Neville, M. Neeb, Th Möller, W. Wurth, E. Rühl, R. Dörner, H. Schmidt-Böcking, W. Eberhardt, G. Ganteför, R. Treusch, P. Radcliffe, K.-H. Meiwes-Broer, Phys. Rev. Lett. 102, 138303 (2009)

    Article  ADS  Google Scholar 

  20. J. Bahn, P. Oelßner, M. Köther, C. Braun, V. Senz, S. Palutke, M. Martins, E. Rühl, G. Ganteför, T. Möller, B. von Issendorff, D. Bauer, J. Tiggesbäumker, K.-H. Meiwes-Broer, New J. Phys. 14, 075008 (2012)

    Article  ADS  Google Scholar 

  21. M. Johnson, A. Bodi, L. Schulz, T. Gerber, Nucl Instr Methods Phys Res A 610, 597–603 (2009)

    Article  ADS  Google Scholar 

  22. L. Nahon, N. de Oliveira, G.A. Garcia, J.-F. Gil, B. Pilette, O. Marcouillé, B. Lagarde, F. Polack, J. Synchrotron Radiat. 19(4), 508 (2012)

    Article  Google Scholar 

  23. W. T. Silfvast, Laser fundamentals (Cambridge, 2004)

  24. J.T. Lau, K. Hirsch, Ph. Klar, A. Langenberg, F. Lofink, R. Richter, J. Rittmann, M. Vogel, V. Zamudio-Bayer, T. Möller, B. von Issendorff, Phys. Rev. A 79, 053201 (2009)

    Article  ADS  Google Scholar 

  25. M. Vogel, C. Kasigkeit, K. Hirsch, A. Langenberg, J. Rittmann, V. Zamudio-Bayer, A. Kulesza, R. Mitri´c, T. Möller, B. von Issendorff, J.T. Lau, Phys. Rev. B 85, 195454 (2012)

    Article  ADS  Google Scholar 

  26. S. Peredkov, M. Neeb, W. Eberhardt, J. Meyer, M. Tombers, H. Kampschulte, G. Niedner-Schatteburg, Phys. Rev. Lett. 107, 233401 (2011)

    Article  ADS  Google Scholar 

  27. S. Peters, S. Peredkov, M. Neeb, W. Eberhardt, M. Al-Hada, Surf. Sci. 608, 129–134 (2003)

    Article  ADS  Google Scholar 

  28. A. Bodi, P. Hemberger, T. Gerber, B. Sztáray, Rev. Sci. Instrum. 83, 083105 (2012)

    Article  ADS  Google Scholar 

  29. H. Haberland, M. Mall, M. Moseler, Y. Qiang, Th Reiners, Y. Thurner, J. Vac. Sci. Technol. A 12, 2925 (1994)

    Article  ADS  Google Scholar 

  30. C. Bartels, C. Hock, J. Huwer, R. Kuhnen, J. Schwöbel, B. von Issendorff, Science 323, 1323 (2009)

    Article  ADS  Google Scholar 

  31. C. Bartels, Ph.D. thesis, University of Freiburg, 2008

  32. J. Berkowitz, Photoabsorption, photoionization, and photoelectron spectroscopy, (Academic Press, 1979), p 384

  33. V. Dribinski, A. Ossadtchi, V.A. Mandelshtam, H. Reisler, Rev. Sci. Instrum. 73, 2634 (2002)

    Article  ADS  Google Scholar 

  34. Thomas Gerber, Yuzhu Liu, Gregor Knopp, Patrick Hemberger, Andras Bodi, Peter Radi, Yaroslav Sych, Rev. Sci. Instrum. 84, 033101 (2013)

    Article  ADS  Google Scholar 

  35. F. Werfel, E. Minni, J. Phys. C 16, 6091 (1986)

    Article  ADS  Google Scholar 

  36. T.S. Sian, G.B. Reddy, Sol. Energy Mater. Sol. Cells 82, 375–386 (2004)

    Article  Google Scholar 

  37. W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993)

    Article  ADS  Google Scholar 

  38. G. Wrigge, M. Astruc Hoffmann, B. von Issendorff, H. Haberland, Eur. Phys. J. D 24, 23–26 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The support by German Research Foundation (DFG Grant No. GA 389/22-1) is gratefully acknowledged. The photoionization experiments were carried out at the VUV beamline of the Swiss Light Source, Paul Scherrer Institute. A.B., P.H., and T.G. acknowledge funding by the Swiss Federal Office for Energy (BFE Contract Number 101969/152433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Schramm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schramm, T., Ganteför, G., Bodi, A. et al. Photoelectron spectroscopy of size-selected cluster ions using synchrotron radiation. Appl. Phys. A 115, 771–779 (2014). https://doi.org/10.1007/s00339-014-8434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8434-z

Keywords

Navigation