Skip to main content
Log in

Focused ion beam fabrication and magneto-electrical transport properties of La0.67Ca0.33MnO3 nanobridge

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

La0.67Ca0.33MnO3 particle films with an average particle size of ~150 nm were grown on single-crystal silicon substrate using pulsed electron deposition technique and then focused ion beam was introduced to fabricate nanobridge in size of 300 × 900 nm on the particle film. The magneto-transport properties of both samples were studied. For the film, there is only one resistance peak at 182 K in temperature-dependent resistance (RT) curves, which is far lower than ferromagnetic–paramagnetic transition temperature (T C) of 250 K. When compared to the film, double peaks were observed in both RT curves and magnetoresistance dependent on temperature (MR–T) curves of the nanobridge, one peak is at 186 K, which is very close to metal–insulator transition temperature (T P) of film, the other one is at 250 K, which is close to the T C of film, and these two peaks caused separately by grain and grain boundary (GB), which demonstrated that the electrical transport behavior of grain was separated from that of GB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Jin, T.H. Tiefel, M. Mc Cormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264, 413 (1994)

    Article  ADS  Google Scholar 

  2. R. von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett. 71, 2331 (1993)

    Article  ADS  Google Scholar 

  3. Y.C. Jiang, J. Gao, Appl. Phys. Lett. 101, 182401 (2012)

    Article  ADS  Google Scholar 

  4. P. Schiffer, A.P. Ramirez, W. Bao, S.W. Cheong, Phys. Rev. Lett. 75, 3336 (1995)

    Article  ADS  Google Scholar 

  5. M. Wagenknecht, H. Eitel, Phys. Rev. Lett. 96, 4703 (2006)

    Article  Google Scholar 

  6. S. Lee, H.Y. Hwang, B.I. Shraiman, W.D. Ratcliff II, S.W. Cheong, Phys. Rev. Lett. 82, 4508 (1999)

    Article  ADS  Google Scholar 

  7. A. Mukherjee, W.S. Cole, P. Woodward, M. Randeria, N. Trivedi, Phys. Rev. Lett. 110, 157201 (2013)

    Article  ADS  Google Scholar 

  8. D. Pantel, S. Goetze, D. Hesse, M. Alexe, Nat. Mater. 11, 289 (2012)

    Article  ADS  Google Scholar 

  9. K. Shigematsu, A. Chikamatsu, Y. Hirose, T. Fukumura, T. Hasegawa, J. Appl. Phys. 111, 07B102 (2012)

    Article  Google Scholar 

  10. M. Schneider, O. Liebfried, V. Stankevič, S. Balevičius, N. Žurauskienė, IEEE Trans. Magn. 45, 430 (2009)

    Article  ADS  Google Scholar 

  11. H.Y. Hwang, S.-W. Cheong, N.P. Ong, B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996)

    Article  ADS  Google Scholar 

  12. R. Mahesh, R. Mahendiran, A.K. Raychaudhuri, C.N.R. Rao, Appl. Phys. Rev. 68, 2291 (1996)

    ADS  Google Scholar 

  13. N.D. Mathur, G. Burnell, S.P. Isaac, T.J. Jackson, B.S. Teo, J.L. MacManusDriscoll, L.F. Cohen, J.E. Evetts, M.G. Blamire, Nature 387, 266 (1997)

    Article  ADS  Google Scholar 

  14. J. Philip, T.R.N. Kutty, Appl. Phys. Lett. 79, 209 (2001)

    Article  ADS  Google Scholar 

  15. H.A. Reshi, S. Pillai, D. Bhuwal, V. Shelke, J. Nanosci. Nanotech. 13, 4608 (2013)

    Article  Google Scholar 

  16. A. de Andres, M. Garcia-Hernandez, J.L. Martinez, C. Prieto, Appl. Phys. Lett. 74, 3884 (1999)

    Article  ADS  Google Scholar 

  17. M. Gu, C.Y. Song, E. Arenholz, N.D. Broning, Y. Takamura, J. Appl. Phys. 111, 084906 (2012)

    Article  ADS  Google Scholar 

  18. X.W. Li, A. Gupta, G. Xiao, G.Q. Gong, Appl. Phys. Lett. 71, 1124 (1997)

    Article  ADS  Google Scholar 

  19. M. Ziese, Phys. Rev. B 60, R738 (1999)

    Article  ADS  Google Scholar 

  20. C.A. Volkert, A.M. Minor, MRS Bull. 32, 389 (2007)

    Article  Google Scholar 

  21. L.F. Wang, X.L. Tan, P.F. Chen, B.W. Zhi, B.B. Chen, Z. Huang, G.Y. Gao, W.B. Wu, AIP Adv. 3, 052106 (2013)

    Article  ADS  Google Scholar 

  22. R. Tripathi, A. Dogra, A.K. Srivastava, V.P.S. Awana, R.K. Kotnala, G.L. Bhalla, H. Kishan, J. Phys. D: Appl. Phys. 42, 25003 (2009)

    Article  Google Scholar 

  23. S. Jacob, T. Roch, F.S. Razavi, G.M. Gross, H.U. Habermeier, J. Appl. Phys. 91, 2232 (2002)

    Article  ADS  Google Scholar 

  24. Y. Fu, N.K.A. Bryan, Appl. Phys. B 80, 033407 (2005)

    Article  Google Scholar 

  25. G. Han, D. Weber, F. Neubrech, I. Yamada, M. Mitome, Y. Bando, A. Pucci, T. Nagao, Nanotechnology 22, 275202 (2011)

    Article  ADS  Google Scholar 

  26. C.H. Wu, F.J. Jhan, J.H. Chen, J.T. Jeng, Supercond. Sci. Technol. 26, 025010 (2013)

    Article  ADS  Google Scholar 

  27. A. Tiwari, K.P. Rajeev, Phys. Rev. B 60, 10591 (1999)

    Article  ADS  Google Scholar 

  28. G. Lalitha, P. Venugopal Reddy, Phys. Scr. 82, 045704 (2010)

    Article  ADS  Google Scholar 

  29. J. Rivas, L.E. Hueso, A. Fondado, F. Rivadulla, M.A. López-Quintela, J. Magn. Magn. Mater. 221, 57 (2000)

    Article  ADS  Google Scholar 

  30. D. Kumar, J. Sankar, J. Narayan, R.K. Singh, A.K. Mazumdar, Phys. Rev. B 65, 094407 (2002)

    Article  ADS  Google Scholar 

  31. A.K. Raychaudhuri, Adv. Phys. 44, 21 (1995)

    Article  ADS  Google Scholar 

  32. M.H. Zhu, Y.G. Zhao, W. Cai, X.S. Wu, S.N. Gao, K. Wang, L.B. Luo, H.S. Huang, L. Lu, Phys. Rev. B 75, 134424 (2007)

    Article  ADS  Google Scholar 

  33. S.K. Mandal, T.K. Nath, V.V. Rao, J. Phys. Condens. Matter 20, 385203 (2008)

    Article  ADS  Google Scholar 

  34. X. Guo, P.G. Li, X. Wang, X.L. Fu, L.M. Chen, M. Lei, W. Zheng, W.H. Tang, J Alloy. Comp. 485, 802 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from the National Natural Science Foundation of China (51202218, 61264017, 51172208, 61274009, 61377067, 11304283), Qianjiang Talent Program of Zhejiang Province (QJD1202004), 521 talent project of Zhejiang Sci-Tech University, Xinmiao Talent Program of Zhejiang Province(2013R406041) and the National Basic Research Program of China (973 Program) (Grant No. 2010CB933501, 2010CB923202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.J., Dong, D.Y., Wang, S.L. et al. Focused ion beam fabrication and magneto-electrical transport properties of La0.67Ca0.33MnO3 nanobridge. Appl. Phys. A 115, 791–795 (2014). https://doi.org/10.1007/s00339-014-8410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8410-7

Keywords

Navigation