Skip to main content
Log in

Electronic and transport properties of monolayer graphene defected by one and two carbon ad-dimers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Using density functional theory combined with non-equilibrium Green’s function method, we have investigated the electronic and transport properties of graphenes defected by one and two carbon ad-dimers (CADs), placed parallel to the graphene lattice. Addition of these CADs to graphenes creates 3D paired pentagon–heptagon defects (3D-PPHDs). The band structure, density of states (DOS), quantum conductance, projected DOS, as well as the current–voltage characteristic per graphene super-cells containing each type of 3D-PPHD are calculated. The local strain introduced to graphene by 3D-PPHDs forces the C-bonds in the dimers to hybridize in sp 3-like rather than sp 2-like orbitals, creating localized states at the center of the corresponding defect below the Fermi energy. Simulations show that the zero-bias conductances per super-cells containing defects created by one and two CADs exhibit dip about ~0.579 and ~0.253 eV below their corresponding Fermi levels, respectively. These can be attributed to the localized states around the same energy levels. Simulations also show that the enhanced carriers scatterings within the graphenes defected by the 3D-PPHDs have increased their overall resistances, as compared with the pristine graphene. Moreover, the current–voltage characteristic calculated per super-cell for each case shows that the current for those containing one and two CADs, at an applied voltage of 0.5 V, is ~5 and 13 % less than the current calculated for the pristine super-cell of the same size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  2. S.M.M. Dubois, Z. Zanolli, X. Declerck, J.C. Charlier, Eur Phys. J. B. 72, 1–24 (2009)

    Article  ADS  Google Scholar 

  3. A.V. Rozhkov, G. Giavaras, Y. Bliokh, V. Freilikher, F. Nori, Phys. Rep. 503, 77–114 (2011)

    ADS  Google Scholar 

  4. P. Avouris, Nano Lett. 10, 4285–4294 (2010)

    ADS  Google Scholar 

  5. A. Geim, K. Novoselov, Nat. Mater. 6, 183–191 (2007)

    ADS  Google Scholar 

  6. S. Adam, E.H. Hwang, V.M. Galitski, S. Das Sarma, Proc Natl Acad Sci USA 104, 18392–18397 (2007)

    ADS  Google Scholar 

  7. M.F. Craciun, S. Russo, M. Yamamoto, S. Tarucha, Nonotoday 6, 42–60 (2011)

    Google Scholar 

  8. M.I. Katsnelson, Materialstoday 10, 20–27 (2007)

    Google Scholar 

  9. L. Liao, J.W. Bai, Y.Q. Qu, Y. Huang, X.F. Duan, Nanotechnology 21, 015705 (2010)

    ADS  Google Scholar 

  10. M. Ishigami, J.H. Chen, W.G. Cullen, M.S. Fuhrer, E.D. Williams, Nano Lett. 7, 1643–1648 (2007)

    ADS  Google Scholar 

  11. H. Gao, Y. Xu, M. Li, Z. Guo, H. Chen, Z. Jin, B. Yu, Nanotechnology 22, 365202 (2011)

    Google Scholar 

  12. C. Tayran, Z. Zhu, M. Baldoni, D. Selli, G. Seifert, D. Tománek, Phys. Rev. lett. 110, 176805 (2013)

    ADS  Google Scholar 

  13. H. Zeng, J.P. Leburton, Y. Xu, J. Wei, Nanoscale Res Lett. 6, 254 (2011)

    ADS  Google Scholar 

  14. J. Ma, D. Alfè, A. Michaelides, E. Wang, Phys. Rev. B 80, 033407 (2009)

    ADS  Google Scholar 

  15. S. Bhowmick, U.V. Waghmare, Phys. Rev. B 81, 155416 (2010)

    ADS  Google Scholar 

  16. M.T. Lusk, D.T. Wu, L.D. Carr, Phys. Rev. B 81, 155444 (2010)

    ADS  Google Scholar 

  17. S. Fotoohi, M.K. Moravvej-Farshi, R. Faez, Appl. Phys. A (in press). doi:10.1007/s00339-013-8120-6

  18. J.M. Soler, E. Artacho, J.D. Gale, A. Garc′ıa, J. Junquera, P. Ordej′on, D. S′anchez-Portal, J. Phys Condens Matter 14, 2745 (2002)

    ADS  Google Scholar 

  19. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993–2006 (1991)

    ADS  Google Scholar 

  20. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  21. C. Fiolhais, F. Nogueira, M. Marques, A primer in density functional theory (Springer, Heidelberg, 2003)

    MATH  Google Scholar 

  22. S. Datta, Quantum transport: atom to transistor (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  23. D.J. Appelhans, Z. Lin, M.T. Lusk, Nanotechnology 23, 385704 (2012)

    Google Scholar 

  24. M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Fotoohi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fotoohi, S., Moravvej-Farshi, M.K. & Faez, R. Electronic and transport properties of monolayer graphene defected by one and two carbon ad-dimers. Appl. Phys. A 116, 2057–2063 (2014). https://doi.org/10.1007/s00339-014-8400-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8400-9

Keywords

Navigation