Advertisement

Applied Physics A

, Volume 116, Issue 2, pp 491–504 | Cite as

Principles of Pyrex® glass chemistry: structure–property relationships

  • Morten M. Smedskjaer
  • Randall E. Youngman
  • John C. MauroEmail author
Article

Abstract

Pyrex® glass was one of the first commercial boroaluminosilicate glass compositions, selected in 1915 from thousands of compositions due to its ability to sustain mechanical and thermal shock. While the microscopic structure of Pyrex® glass has recently been investigated, the microscopic origins of its macroscopic properties are not well understood, i.e., the atomic scale foundation of the original empirical invention of Pyrex® glass has yet to be established. In this work, we have tackled this problem by investigating the effects of varying Si/Al and Na/B ratios on the boron and aluminum speciation and a range of physical and rheological properties in the Pyrex® glass family. We show that the canonical Pyrex® boroaluminosilicate composition is indeed optimal for attaining relatively high values of glass transition temperature and elastic moduli and a low coefficient of thermal expansion, while simultaneously maintaining a high glass-forming ability.

Keywords

B2O3 Na2O Composition Dependence Tetrahedral Boron Intermediate Range Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank the Characterization and Materials Processing Directorate at Corning Incorporated for help with glass preparation and characterization.

References

  1. 1.
    C.R. Kurkjian, W.R. Prindle, J. Am. Ceram. Soc. 81, 795 (1998)CrossRefGoogle Scholar
  2. 2.
    F. Angeli, O. Villain, S. Schuller, T. Charpentier, D. de Ligny, L. Bressel, L. Wondraczek, Phys. Rev. B 85, 054110 (2012)CrossRefADSGoogle Scholar
  3. 3.
    A. Ellison, I.A. Cornejo, Int. J. Appl. Glass Sci. 1, 87 (2010)CrossRefGoogle Scholar
  4. 4.
    C.M. Jantzen, K.G. Brown, J.B. Pickett, Int. J. Appl. Glass Sci. 1, 38 (2010)CrossRefGoogle Scholar
  5. 5.
    A.K. Varshneya, Int. J. Appl. Glass Sci. 1, 131 (2010)CrossRefGoogle Scholar
  6. 6.
    W.B. Jensen, J. Chem. Educ. 83, 692 (2006)CrossRefGoogle Scholar
  7. 7.
    Y. Bottinga, D.F. Weill, Am. J. Sci. 272, 438 (1972)CrossRefGoogle Scholar
  8. 8.
    J.C.C. Chan, M. Bertmer, H. Eckert, J. Am. Chem. Soc. 121, 5238 (1999)CrossRefGoogle Scholar
  9. 9.
    A. Bernasconi, M. Dapiaggi, A. Pavese, D.T. Bowron, J. Phys. Chem. B 116, 13114 (2012)CrossRefGoogle Scholar
  10. 10.
    D.R. Neuville, L. Cormier, D. Massiot, Geochim. Cosmochim. Acta 68, 5071 (2004)CrossRefADSGoogle Scholar
  11. 11.
    D.R. Neuville, L. Cormier, D. Massiot, Chem. Geol. 229, 173 (2006)CrossRefGoogle Scholar
  12. 12.
    P.J. Bray, J. Non-Cryst. Solids 75, 29 (1985)CrossRefADSGoogle Scholar
  13. 13.
    H. Inoue, A. Masuno, Y. Watanabe, J. Phys. Chem. B 116, 12325 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Prasad, T.M. Clark, T.H. Sefzik, H.-T. Kwak, Z. Gan, P.J. Grandinetti, J. Non-Cryst. Solids 352, 2834 (2006)CrossRefADSGoogle Scholar
  15. 15.
    A.P. Howes, N.M. Vedishcheva, A. Samoson, J.V. Hanna, M.E. Smith, D. Holland, R. Dupree, Phys. Chem. Chem. Phys. 13, 11919 (2011)CrossRefGoogle Scholar
  16. 16.
    G.L. Turner, K. Smith, R.J. Kirkpatrick, E. Oldfield, J. Magn. Reson. 67, 544 (1986)ADSGoogle Scholar
  17. 17.
    A.C. Wright, Phys. Chem. Glasses Eur. J. Glass. Sci. Technol. B 51, 1 (2010)Google Scholar
  18. 18.
    R.E. Youngman, J.W. Zwanziger, J. Phys. Chem. 100, 16720 (1996)CrossRefGoogle Scholar
  19. 19.
    R.E. Youngman, J.W. Zwanziger, J. Non-Cryst. Solids 168, 293 (1994)CrossRefADSGoogle Scholar
  20. 20.
    R.E. Youngman, S.T. Haubrich, J.W. Zwanziger, M.T. Janicke, B.F. Chmelka, Science 269, 1416 (1995)CrossRefADSGoogle Scholar
  21. 21.
    J.C. Phillips, R. Kerner, J. Chem. Phys. 128, 174506 (2008)CrossRefADSGoogle Scholar
  22. 22.
    M. Murakami, T. Shimizu, M. Tansho, T. Akai, T. Yazawa, Chem. Lett. 39, 32 (2010)CrossRefGoogle Scholar
  23. 23.
    S.S. Uzun, S. Sen, J. Phys. Chem. B 111, 9758 (2007)CrossRefGoogle Scholar
  24. 24.
    M.M. Smedskjaer, J.C. Mauro, J. Kjeldsen, Y.Z. Yue, J. Am. Ceram. Soc. 96, 1436 (2013)CrossRefGoogle Scholar
  25. 25.
    M. Potuzak, J.C. Mauro, T.J. Kiczenski, A.J. Ellison, D.C. Allan, J. Chem. Phys. 133, 091102 (2010)CrossRefADSGoogle Scholar
  26. 26.
    M.M. Smedskjaer, L.P. Huang, G. Scannell, J.C. Mauro, Phys. Rev. B 85, 144203 (2012)CrossRefADSGoogle Scholar
  27. 27.
    R.G.C. Beerkens, R. Conradt, Glass Technol. Eur. J. Glass Sci. Technol. A 49, 205 (2008)Google Scholar
  28. 28.
    J.P. Amoureux, C. Fernandez, S. Steuernagel, J. Magn. Reson. A 123, 116 (1996)CrossRefADSGoogle Scholar
  29. 29.
    J.P. Amoureux, C. Huguenard, F. Engelke, F. Taulelle, Chem. Phys. Lett. 356, 497 (2002)CrossRefADSGoogle Scholar
  30. 30.
    D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 40, 70 (2002)CrossRefGoogle Scholar
  31. 31.
    D. Massiot, C. Bessada, J.P. Coutures, F. Taulelle, J. Magn. Reson. 90, 231 (1990)ADSGoogle Scholar
  32. 32.
    D.R. Neuville, L. Cormier, V. Montouillout, D. Massiot, J. Non-Cryst. Solids 353, 180 (2007)CrossRefADSGoogle Scholar
  33. 33.
    L.S. Du, J.F. Stebbins, J. Phys. Chem. B 107, 10063 (2003)CrossRefGoogle Scholar
  34. 34.
    X.W. Wu, R.E. Youngman, R. Dieckmann, J. Non-Cryst. Solids 378, 168 (2013)CrossRefADSGoogle Scholar
  35. 35.
    W.J. Dell, P.J. Bray, S.Z. Xiao, J. Non-Cryst. Solids 58, 1 (1983)CrossRefADSGoogle Scholar
  36. 36.
    Y.H. Yun, P.J. Bray, J. Non-Cryst. Solids 27, 363 (1978)CrossRefADSGoogle Scholar
  37. 37.
    J.H. Zhong, P.J. Bray, J. Non-Cryst. Solids 111, 67 (1989)CrossRefADSGoogle Scholar
  38. 38.
    Q.J. Zheng, R.E. Youngman, C.L. Hogue, J.C. Mauro, M. Potuzak, M.M. Smedskjaer, Y.Z. Yue, Phys. Rev. B 86, 054203 (2012)CrossRefADSGoogle Scholar
  39. 39.
    M.M. Smedskjaer, J.C. Mauro, R.E. Youngman, C.L. Hogue, M. Potuzak, Y.Z. Yue, J. Phys. Chem. B 115, 12930 (2011)CrossRefGoogle Scholar
  40. 40.
    R.J. Araujo, J. Non-Cryst. Solids 42, 209 (1980)CrossRefADSGoogle Scholar
  41. 41.
    Y.Z. Yue, J. Non-Cryst. Solids 354, 1112 (2008)CrossRefADSGoogle Scholar
  42. 42.
    D.E. Day, G.E. Rindone, J. Am. Ceram. Soc. 45, 489 (1962)CrossRefGoogle Scholar
  43. 43.
    T. Rouxel, J. Am. Ceram. Soc. 90, 3019 (2007)CrossRefGoogle Scholar
  44. 44.
    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976)CrossRefADSGoogle Scholar
  45. 45.
    J.C. Mauro, Y.Z. Yue, A.J. Ellison, P.K. Gupta, D.C. Allan, Proc. Natl. Acad. Sci. USA 106, 19780 (2009)CrossRefGoogle Scholar
  46. 46.
    C.A. Angell, Science 267, 1924 (1995)CrossRefADSGoogle Scholar
  47. 47.
    P.K. Gupta, J.C. Mauro, J. Chem. Phys. 130, 094503 (2009)CrossRefADSGoogle Scholar
  48. 48.
    M.M. Smedskjaer, J.C. Mauro, S. Sen, Y.Z. Yue, Chem. Mater. 22, 5358 (2010)CrossRefGoogle Scholar
  49. 49.
    A.K. Varshneya, Fundamentals of Inorganic Glasses (Society of Glass Technology, Sheffield, 2006)Google Scholar
  50. 50.
    R.M.C.V. Reis, J.C. Mauro, K.L. Geisinger, M. Potuzak, M.M. Smedskjaer, X.J. Guo, D.C. Allan, J. Non-Cryst. Solids 358, 648 (2012)CrossRefADSGoogle Scholar
  51. 51.
    G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)CrossRefADSGoogle Scholar
  52. 52.
    J.C. Mauro, R.J. Loucks, J. Balakrishnan, S. Raghavan, J. Chem. Phys. 126, 194103 (2007)CrossRefADSGoogle Scholar
  53. 53.
    W. Kauzmann, Chem. Rev. 43, 219 (1948)CrossRefGoogle Scholar
  54. 54.
    B.M. Abel, J.C. Mauro, M.M. Smedskjaer, J.M. Morgan, C.L. LaPierre, G.R. Swan, M.E. Mack, A.J. Ellison, J. Non-Cryst. Solids 363, 39 (2013)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Morten M. Smedskjaer
    • 1
    • 2
  • Randall E. Youngman
    • 2
  • John C. Mauro
    • 2
    Email author
  1. 1.Section of ChemistryAalborg UniversityAalborgDenmark
  2. 2.Science and Technology DivisionCorning IncorporatedCorningUSA

Personalised recommendations