Applied Physics A

, Volume 115, Issue 2, pp 651–660 | Cite as

Aluminum integral foams with tailored density profile by adapted blowing agents

Article
  • 138 Downloads

Abstract

The goal of the present work is the variation of the structure of aluminum integral foams regarding the thickness of the integral solid skin as well as the density profile. A modified die casting process, namely integral foam molding, is used in which an aluminum melt and blowing agent particles (magnesium hydride MgH2) are injected in a permanent steel mold. The high solidification rates at the cooled walls of the mold lead to the formation of a solid skin. In the inner region, hydrogen is released by thermal decomposition of MgH2 particles. Thus, the pore formation takes place parallel to the continuing solidification of the melt. The thickness of the solid skin and the density profile of the core strongly depend on the interplay between solidification velocity and kinetics of hydrogen release. By varying the melt and blowing agent properties, the structure of integral foams can be systematically changed to meet the requirements of the desired field of application of the produced component.

References

  1. 1.
    C. Körner, R.F. Singer, Adv. Eng. Mater. 2, 4 (2000)CrossRefGoogle Scholar
  2. 2.
    H. Wiehler, Prozessentwicklung des Hochdruckintegralschaumgießens von Aluminium, PhD Thesis, University of Erlangen-Nuremberg, 2010Google Scholar
  3. 3.
    H.-W. Seeliger, Adv. Eng. Mater. 4, 10 (2002)CrossRefGoogle Scholar
  4. 4.
    A. Trepper, Niederdruck-Integralschaumgießen—Technologie für Aluminiumgussteile mit reduziertem Körperschall, PhD Thesis, University of Erlangen-Nuremberg, 2010Google Scholar
  5. 5.
    C. Körner, Integral foam molding of light metals: technology, foam physics and foam simulation (Springer, Berlin, 2008)Google Scholar
  6. 6.
    H. Wiehler, C. Körner, R.F. Singer, Adv. Eng. Mater. 10, 3 (2008)CrossRefGoogle Scholar
  7. 7.
    J. Hartmann, A. Trepper, C. Körner, Adv. Eng. Mater. 13, 11 (2011)CrossRefGoogle Scholar
  8. 8.
    J.F. Fernández, C.R. Sánchez, J. Alloys Compd. 340, 1–2 (2002)CrossRefGoogle Scholar
  9. 9.
    P. Wang, A.M. Wang, Y.L. Wang, H.F. Zhang, Z.Q. Hu, Scripta Mater. 43, 1 (2000)CrossRefGoogle Scholar
  10. 10.
    A. Andreasen, M.B. Sørensen, R. Burkarl, B. Møller, A.M. Molenbroek, A.S. Pedersen, J.W. Andreasen, M.M. Nielsen, T.R. Jensen, J. Alloys Compd. 404–406, Spec. Iss., 323–326 (2005)Google Scholar
  11. 11.
    T.R. Jensen, A. Andreasen, T. Vegge, J.W. Andreasen, K. Ståhl, A.S. Pedersen, M.M. Nielsen, A.M. Molenbroek, F. Besenbacher, Int. J. Hydrogen Energ. 31, 14 (2006)CrossRefGoogle Scholar
  12. 12.
    R.A. Varin, S. Li, A. Calka, J. Alloys Compd. 376, 1–2 (2004)CrossRefGoogle Scholar
  13. 13.
    B. Matijasevic-Lux, J. Banhart, S. Fiechter, O. Görke, N. Wanderka, Acta Mater. 54, 7 (2006)CrossRefGoogle Scholar
  14. 14.
    B. Matijasevic-Lux, J. Banhart, Scripta Mater. 54(4), Spec. Iss. (2006)Google Scholar
  15. 15.
    G. Barkhordarian, T. Klassen, R. Bormann, J. Alloys Compd. 407, 1–2 (2006)CrossRefGoogle Scholar
  16. 16.
    A. Zaluska, L. Zaluski, J.O. Ström-Olsen, J. Alloys Compd. 289, 1–2 (1999)CrossRefGoogle Scholar
  17. 17.
    A. Borgschulte, M. Bielmann, A. Züttel, G. Barkhordarian, M. Dornheim, R. Bormann, Appl. Surf. Sci. 254, 8 (2008)CrossRefGoogle Scholar
  18. 18.
    G. Stepura, V. Rosenband, A. Gany, J. Alloys Compd. 513, 159–164 (2012)Google Scholar
  19. 19.
    R.A. Varin, T. Czujko, Ch. Chiu, Z. Wronski, J. Alloys Compd. 424, 1–2 (2006)CrossRefGoogle Scholar
  20. 20.
    C.W. Ostenfeld, I. Chorkendorff, Surf. Sci. 600, 6 (2006)CrossRefGoogle Scholar
  21. 21.
    M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, R. Bormann, Scripta Mater. 56, 10 (2007)CrossRefGoogle Scholar
  22. 22.
    R.L. Corey, T.M. Ivancic, D.T. Shane, E.A. Carl, R.C. Bowman Jr, J.M. Bellosta von Colbe, M. Dornheim, R. Bormann, J. Huot, R. Zidan, A.C. Stowe, M.S. Conradi, J. Phys. Chem. C 112, 49 (2008)Google Scholar
  23. 23.
    G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, J. Alloys Compd. 292, 1–2 (1999)CrossRefGoogle Scholar
  24. 24.
    W. Oelerich, T. Klassen, R. Bormann, J. Alloys Compd. 315, 1–2 (2001)CrossRefGoogle Scholar
  25. 25.
    H.G. Schimmel, M.R. Johnson, G.J. Kearley, A.J. Ramirez-Cuesta, J. Huot, F.M. Mulder, J. Alloys Compd. 393, 1–2 (2005)CrossRefGoogle Scholar
  26. 26.
    O. Friedrichs, J.C. Sánchez-López, C. López-Cartes, M. Dornheim, T. Klassen, R. Bormann, A. Fernández, Appl. Surf. Sci. 252, 6 (2006)CrossRefGoogle Scholar
  27. 27.
    C.-H. Chao, T.-C- Jen, Appl. Mech. Mater. 302, 151–157 (2013)Google Scholar
  28. 28.
    A. Zaluska, L. Zaluski, J.O. Ström-Olsen, J. Alloys Compd. 288, 1–2 (1999)CrossRefGoogle Scholar
  29. 29.
    I. Halikia, P. Neou-Syngouna, D. Kolitsa, Thermochim. Acta 320, 1–2 (1998)CrossRefGoogle Scholar
  30. 30.
    S. Otarawanna, C.M. Gourlay, H.I. Laukli, A.K. Dahle, Metall. Mater. Trans. A 40, 7 (2009)CrossRefGoogle Scholar
  31. 31.
    W. Fragner, H. Kaufmann, Druckgusspraxis 1, 29–33 (2005)Google Scholar
  32. 32.
    M. Bünck, E. Schaberger-Zimmermann, E. Breuer, B. Lao, A. Bührig-Polaczek, Giesserei 10 (2012)Google Scholar
  33. 33.
    J.F. Fernández, C.R. Sánchez, J. Alloys Compd. 356–357, 348–352 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Johannes Hartmann
    • 1
  • Tobias Fiegl
    • 1
  • Carolin Körner
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations