High-speed camera study of Stage III crack propagation in chemically strengthened glass

Abstract

Thermally or chemically strengthened glass is more resistant to damage and breakage compared to non-strengthened glass. Both strengthening mechanisms are based on incorporation of a compressive stress profile in the surface of the glass, which must be balanced by an equivalent amount of integrated tensile stress in the interior of the glass. This tensile stress is believed to affect the kinetics of Stage III crack propagation upon fracture of the sample. In this study, we use a high-speed camera to perform direct measurement of the kinetics of Stage III fracture in a strengthened glass sample. Data including crack propagation speed, crack bifurcation distance, and bifurcation angles are collected at a rate of 500,000 frames per second and then characterized. The authors believe that these data will provide a foundation for understanding the physics of Stage III fracture in strengthened glass samples.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    L. Wondraczek, J.C. Mauro, J. Eckert, U. Kühn, J. Horbach, J. Deubener, T. Rouxel, Adv. Mater. 23, 4578 (2011)

    Article  Google Scholar 

  2. 2.

    A. Tandia, K.D. Vargheese, J.C. Mauro, A.K. Varshneya, J. Non-Cryst. Solids 358, 316 (2012)

    Article  ADS  Google Scholar 

  3. 3.

    A. Tandia, K.D. Vargheese, J.C. Mauro, J. Non-Cryst. Solids 358, 1569 (2012)

    Article  ADS  Google Scholar 

  4. 4.

    S.S. Kistler, J. Am. Ceram. Soc. 45, 59 (1962)

    Article  Google Scholar 

  5. 5.

    P. Acloque, J. Tochon, “Measurement of Mechanical Resistance of Glass after Reinforcement,” in colloquium on mechanical strength of glass and ways of improving it, 25–29 September 1961, Florence, Italy (Union Scientifique Continentale du Verre, Charlori, Belgium, 1962), pp. 687–704

  6. 6.

    ECE regulation R43, Agreement concerning the adoption of uniform technical prescriptions for wheeled vehicles, Equipment and parts which can be fitted and/or be used on wheeled vehicles and the conditions for reciprocal recognition of approvals granted on the basis of these prescriptions, p. 46

  7. 7.

    G.T. Embley, G.C. Sih, Eng. Fract. Mech. 4, 431 (1972)

    Article  Google Scholar 

  8. 8.

    S.M. Wiederhorn, A. Dretzke, J. Rödel, J. Am. Ceram. Soc. 85, 2287 (2002)

    Article  Google Scholar 

  9. 9.

    K.-T. Wan, S. Lathabai, B.R. Lawn, J. Euro, Ceram. Soc. 6, 259 (1990)

    Article  Google Scholar 

  10. 10.

    S.T. Gulati, Trans. Ind. Ceram. Soc. 64, 117 (2005)

    Google Scholar 

  11. 11.

    R.F. Cook, E.G. Liniger, J. Am. Ceram. Soc. 76, 1096 (1993)

    Article  Google Scholar 

  12. 12.

    L.I. Slepyan, J. Mech. Phys. Solids 41, 1019 (1993)

    Article  MATH  ADS  Google Scholar 

  13. 13.

    B.N.J. Persson, E.A. Brener, Phys. Rev. E 71, 036123 (2005)

    Article  ADS  Google Scholar 

  14. 14.

    L. Ponson, D. Bonamy, Int. J. Fract. 162, 21 (2010)

    Article  MATH  Google Scholar 

  15. 15.

    L.B. Freund, Dynamic fracture mechanics (Cambridge Univ. Press, New York, 1990)

    Google Scholar 

  16. 16.

    M.F. Kanninen, C. Popelar, Advanced fracture mechanics (Oxford University Press, New York, 1985)

    Google Scholar 

  17. 17.

    E. Bouchbinder, J. Fineberg, M. Marder, Ann. Rev. Condens. Matter Phys. 1, 371 (2010)

    Article  ADS  Google Scholar 

  18. 18.

    Y.M. Tsai, Eng. Fract. Mech. 6, 509 (1974)

    Article  Google Scholar 

  19. 19.

    S. Aoki, M. Sakata, Eng. Fract. Mech. 13, 491 (1980)

    Article  Google Scholar 

  20. 20.

    Z.F. Song, G.C. Sih, Theor. Appl. Fract. Mech. 38, 121 (2002)

    Article  Google Scholar 

  21. 21.

    A. Karma, A.E. Lobkovsky, Phys. Rev. Lett. 92, 245510 (2004)

    Article  ADS  Google Scholar 

  22. 22.

    G.D. Quinn, Fractography of ceramics and glasses, NIST, Spec. Publ. 960-17, Washington, 2006

  23. 23.

    E. Bouyne, O. Gaume, Fragmentation of thin chemically tempered glass plates. Glass Technol. 43C, 300–302 (2002)

    Google Scholar 

  24. 24.

    Z. Tang, M.B. Abrams, J.C. Mauro, N. Venkataraman, T.E. Meyer, J.M. Jacobs, X. Wu, and A.J. Ellison, Automated apparatus for measuring the frangibility and fragmentation of strengthened glass, Exp. Mech. 2013. doi:10.1007/s11340-014-9855-5

  25. 25.

    K. Ravi-Chandar, W.G. Knauss, An experimental investigation into dynamic fracture: II. Microstruct Asp. Int. J. Fract. 26, 65–80 (1984)

    Article  Google Scholar 

  26. 26.

    J.E. Field, Brittle fracture: its study and application. Contemp. Phys. 12(1), 1–31 (1971)

    Article  ADS  Google Scholar 

  27. 27.

    W. Doll, Investigations of the crack branching energy. Int. J. Fract. 11, 184–186 (1975)

    Article  Google Scholar 

  28. 28.

    F. Kerkhoff, in Dynamic crack propagation, ed. by G.C. Sih, (Noordhoff International Publishing, Leyden, 1973), pp. 3–35

  29. 29.

    M. Ramulu, A.S. Kobayashi, Mechanics of crack curving and branching––a dynamic fracture analysis, dynamic fracture, 1985, pp. 61–75

  30. 30.

    F.P. Bowden, J.H. Brunton, J.E. Field, A.D. Heyes, Controlled fracture of brittle solids and interruption of electrical current. Nature 216, 38–42 (1967)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Todd Rumbaugh of Hadland Imaging and Jason O’Connell of Tech Imaging Services for assistance with the high-speed camera.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John C. Mauro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MPG 1162 kb)

Supplementary material 2 (MPG 1155 kb)

Supplementary material 3 (MPG 1162 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tang, Z., Abrams, M.B., Mauro, J.C. et al. High-speed camera study of Stage III crack propagation in chemically strengthened glass. Appl. Phys. A 116, 471–477 (2014). https://doi.org/10.1007/s00339-014-8370-y

Download citation

Keywords

  • Crack Velocity
  • Dynamic Stress Intensity Factor
  • Bifurcation Angle
  • Dynamic Crack Propagation
  • Crack Propagation Speed