Advertisement

Applied Physics A

, Volume 116, Issue 2, pp 471–477 | Cite as

High-speed camera study of Stage III crack propagation in chemically strengthened glass

  • Zhongzhi Tang
  • Matthew B. Abrams
  • John C. MauroEmail author
  • Leon R. Zoeller
  • Natesan Venkataraman
  • Guangli Hu
Article

Abstract

Thermally or chemically strengthened glass is more resistant to damage and breakage compared to non-strengthened glass. Both strengthening mechanisms are based on incorporation of a compressive stress profile in the surface of the glass, which must be balanced by an equivalent amount of integrated tensile stress in the interior of the glass. This tensile stress is believed to affect the kinetics of Stage III crack propagation upon fracture of the sample. In this study, we use a high-speed camera to perform direct measurement of the kinetics of Stage III fracture in a strengthened glass sample. Data including crack propagation speed, crack bifurcation distance, and bifurcation angles are collected at a rate of 500,000 frames per second and then characterized. The authors believe that these data will provide a foundation for understanding the physics of Stage III fracture in strengthened glass samples.

Keywords

Crack Velocity Dynamic Stress Intensity Factor Bifurcation Angle Dynamic Crack Propagation Crack Propagation Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Todd Rumbaugh of Hadland Imaging and Jason O’Connell of Tech Imaging Services for assistance with the high-speed camera.

Supplementary material

Supplementary material 1 (MPG 1162 kb)

Supplementary material 2 (MPG 1155 kb)

Supplementary material 3 (MPG 1162 kb)

References

  1. 1.
    L. Wondraczek, J.C. Mauro, J. Eckert, U. Kühn, J. Horbach, J. Deubener, T. Rouxel, Adv. Mater. 23, 4578 (2011)CrossRefGoogle Scholar
  2. 2.
    A. Tandia, K.D. Vargheese, J.C. Mauro, A.K. Varshneya, J. Non-Cryst. Solids 358, 316 (2012)CrossRefADSGoogle Scholar
  3. 3.
    A. Tandia, K.D. Vargheese, J.C. Mauro, J. Non-Cryst. Solids 358, 1569 (2012)CrossRefADSGoogle Scholar
  4. 4.
    S.S. Kistler, J. Am. Ceram. Soc. 45, 59 (1962)CrossRefGoogle Scholar
  5. 5.
    P. Acloque, J. Tochon, “Measurement of Mechanical Resistance of Glass after Reinforcement,” in colloquium on mechanical strength of glass and ways of improving it, 25–29 September 1961, Florence, Italy (Union Scientifique Continentale du Verre, Charlori, Belgium, 1962), pp. 687–704Google Scholar
  6. 6.
    ECE regulation R43, Agreement concerning the adoption of uniform technical prescriptions for wheeled vehicles, Equipment and parts which can be fitted and/or be used on wheeled vehicles and the conditions for reciprocal recognition of approvals granted on the basis of these prescriptions, p. 46Google Scholar
  7. 7.
    G.T. Embley, G.C. Sih, Eng. Fract. Mech. 4, 431 (1972)CrossRefGoogle Scholar
  8. 8.
    S.M. Wiederhorn, A. Dretzke, J. Rödel, J. Am. Ceram. Soc. 85, 2287 (2002)CrossRefGoogle Scholar
  9. 9.
    K.-T. Wan, S. Lathabai, B.R. Lawn, J. Euro, Ceram. Soc. 6, 259 (1990)CrossRefGoogle Scholar
  10. 10.
    S.T. Gulati, Trans. Ind. Ceram. Soc. 64, 117 (2005)Google Scholar
  11. 11.
    R.F. Cook, E.G. Liniger, J. Am. Ceram. Soc. 76, 1096 (1993)CrossRefGoogle Scholar
  12. 12.
    L.I. Slepyan, J. Mech. Phys. Solids 41, 1019 (1993)CrossRefzbMATHADSGoogle Scholar
  13. 13.
    B.N.J. Persson, E.A. Brener, Phys. Rev. E 71, 036123 (2005)CrossRefADSGoogle Scholar
  14. 14.
    L. Ponson, D. Bonamy, Int. J. Fract. 162, 21 (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    L.B. Freund, Dynamic fracture mechanics (Cambridge Univ. Press, New York, 1990)CrossRefzbMATHGoogle Scholar
  16. 16.
    M.F. Kanninen, C. Popelar, Advanced fracture mechanics (Oxford University Press, New York, 1985)zbMATHGoogle Scholar
  17. 17.
    E. Bouchbinder, J. Fineberg, M. Marder, Ann. Rev. Condens. Matter Phys. 1, 371 (2010)CrossRefADSGoogle Scholar
  18. 18.
    Y.M. Tsai, Eng. Fract. Mech. 6, 509 (1974)CrossRefGoogle Scholar
  19. 19.
    S. Aoki, M. Sakata, Eng. Fract. Mech. 13, 491 (1980)CrossRefGoogle Scholar
  20. 20.
    Z.F. Song, G.C. Sih, Theor. Appl. Fract. Mech. 38, 121 (2002)CrossRefGoogle Scholar
  21. 21.
    A. Karma, A.E. Lobkovsky, Phys. Rev. Lett. 92, 245510 (2004)CrossRefADSGoogle Scholar
  22. 22.
    G.D. Quinn, Fractography of ceramics and glasses, NIST, Spec. Publ. 960-17, Washington, 2006Google Scholar
  23. 23.
    E. Bouyne, O. Gaume, Fragmentation of thin chemically tempered glass plates. Glass Technol. 43C, 300–302 (2002)Google Scholar
  24. 24.
    Z. Tang, M.B. Abrams, J.C. Mauro, N. Venkataraman, T.E. Meyer, J.M. Jacobs, X. Wu, and A.J. Ellison, Automated apparatus for measuring the frangibility and fragmentation of strengthened glass, Exp. Mech. 2013. doi: 10.1007/s11340-014-9855-5
  25. 25.
    K. Ravi-Chandar, W.G. Knauss, An experimental investigation into dynamic fracture: II. Microstruct Asp. Int. J. Fract. 26, 65–80 (1984)CrossRefGoogle Scholar
  26. 26.
    J.E. Field, Brittle fracture: its study and application. Contemp. Phys. 12(1), 1–31 (1971)CrossRefADSGoogle Scholar
  27. 27.
    W. Doll, Investigations of the crack branching energy. Int. J. Fract. 11, 184–186 (1975)CrossRefGoogle Scholar
  28. 28.
    F. Kerkhoff, in Dynamic crack propagation, ed. by G.C. Sih, (Noordhoff International Publishing, Leyden, 1973), pp. 3–35Google Scholar
  29. 29.
    M. Ramulu, A.S. Kobayashi, Mechanics of crack curving and branching––a dynamic fracture analysis, dynamic fracture, 1985, pp. 61–75Google Scholar
  30. 30.
    F.P. Bowden, J.H. Brunton, J.E. Field, A.D. Heyes, Controlled fracture of brittle solids and interruption of electrical current. Nature 216, 38–42 (1967)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Zhongzhi Tang
    • 1
  • Matthew B. Abrams
    • 1
  • John C. Mauro
    • 1
    Email author
  • Leon R. Zoeller
    • 1
  • Natesan Venkataraman
    • 1
  • Guangli Hu
    • 1
  1. 1.Science and Technology DivisionCorning IncorporatedCorningUSA

Personalised recommendations