Skip to main content
Log in

Improved charge injection of pentacene transistors by immobilizing DNA on gold source-drain electrodes

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We successfully optimized the charge injection of pentacene-based organic thin-film transistors with bottom contact by immobilizing deoxyribonucleic acid (DNA) on gold electrodes. The single-stranded DNA having mercapto group (-SH) was used as the modified layer by molecular self-assembly onto the surface of gold electrodes. The threshold voltage is −10 V, and the field-effect mobility reaches 0.34 cm2/V s, which is comparable with that of typical top-contact devices. Mechanism of performance improvement is due to the high carrier density in contact region attracted by the phosphate group on the DNA backbone increasing the tunneling probability for improved charge injection. Furthermore, the introduction of modified layer significantly enhanced the grain size of pentacene that is beneficial for charge transport, which also is responsible for the improved device performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. G. Horowitz, Adv. Mater. 10, 365–377 (1998)

    Article  Google Scholar 

  2. H. Klauk, D.J. Gundlach, J.A. Nichols, T.N. Jackson, IEEE Trans. Electron Device 46, 1258–1263 (1999)

    Article  ADS  Google Scholar 

  3. C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mater. 14, 99–117 (2002)

    Article  Google Scholar 

  4. C.D. Sheraw, L. Zhou, J.R. Huang, D.J. Gundlach, T.N. Jackson, Appl. Phys. Lett. 80, 1088–1090 (2002)

    Article  ADS  Google Scholar 

  5. A. Dodabalapur, Z. Bao, A. Makhija, J.G. Laquindanum, V.R. Raju, Y. Feng, H.E. Katz, J. Rogers, Appl. Phys. Lett. 73, 142–144 (1998)

    Article  ADS  Google Scholar 

  6. S. Steudel, S.D. Vusser, K. Myny, M. Lenes, J. Genoe, P. Heremans, J. Appl. Phys. 95, 114519 (2006)

    Article  ADS  Google Scholar 

  7. B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H.E. Katz, A.J. Lovinger, Z. Bao, Appl. Phys. Lett. 78, 2229–2231 (2001)

    Article  ADS  Google Scholar 

  8. S.W. Liu, C.C. Lee, J.M. Wen, C.T. Chen, Appl. Phys. Lett. 98, 023306 (2011)

    Article  ADS  Google Scholar 

  9. H. Ishii, K. Sugiyama, E. Ito, K. Seki, Adv. Mater. 11, 605–608 (1999)

    Article  Google Scholar 

  10. D. Cahen, A. Kahn, Adv. Mater. 15, 271–277 (2003)

    Article  Google Scholar 

  11. B.H. Hamadani, D. Natelson, J. Appl. Phys. 97, 064508 (2005)

    Article  ADS  Google Scholar 

  12. D.J. Gundlach, L. Zhou, J.A. Nichols, T.N. Jackson, P.V. Necliudov, M.S. Shur, J. Appl. Phys. 100, 024509 (2006)

    Article  ADS  Google Scholar 

  13. I.G. Hill, D. Milliron, J. Schwartz, A. Kahn, Appl. Surf. Sci. 166, 354–362 (2000)

    Article  ADS  Google Scholar 

  14. A. Kahn, N. Koch, W. Gao, J. Polym. Sci. B: Polym. Phys. 41, 2529–2548 (2003)

    Article  ADS  Google Scholar 

  15. K. Hong, J.W. Lee, S.Y. Yang, K. Shin, H. Jeon, S.H. Kim, C. Yang, C.E. Park, Org. Electron. 9, 21–29 (2008)

    Article  Google Scholar 

  16. I.H. Campbell, S. Rubin, T.A. Zawodzinski, J.D. Kress, Phys. Rev. B-Condens. Matter. 54, 14321–14324 (1996)

    Article  ADS  Google Scholar 

  17. D.J. Gundlach, L.L. Jia, T.N. Jackson, IEEE Electron Device Lett. 22, 571–573 (2001)

    Article  ADS  Google Scholar 

  18. R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A.E. Kassmi, F. Demanze, F. Kouki, Adv. Mater. 9, 389–391 (1997)

    Article  Google Scholar 

  19. R. Schroeder, L.A. Majewski, M. Grell, Appl. Phys. Lett. 84, 1004–1006 (2004)

    Article  ADS  Google Scholar 

  20. C. Yumusak, T.B. Singh, N.S. Sariciftci, J.G. Grote, Appl. Phys. Lett. 95, 263304 (2009)

    Article  ADS  Google Scholar 

  21. P. Zalar, D. Kamkar, R. Naik, F. Ouchen, J.G. Grote, G.C. Bazan, T-Q. Nguyen. J. Am. Chem. Soc. 133, 11010–11013 (2011)

    Article  Google Scholar 

  22. J. Zaumseil, H. Sirringhaus, Chem. Rev. 107, 1296–1323 (2007)

    Article  Google Scholar 

  23. S. Steudel, S.D. Vusser, K. Myny, M. Lenes, J. Genoe, P. Heremans, J. Appl. Phys. 95, 114519 (2006)

    Article  ADS  Google Scholar 

  24. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, Proc. Natl. Acad. Sci. 101, 9966–9970 (2004)

    Article  ADS  Google Scholar 

  25. M. Marinkovic, D. Belaineh, V. Wagner, D. Knipp, Adv. Mater. 24, 4005–4009 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61176021), Mechatronics Engineering Innovation Group Project (11ZZ81, 211054), “Shu Guang” project support by Shanghai Municipal Education Commission, and Education Ministry of China. The Science and Technology Commission of Shanghai Municipality (Grant No. 09ZR1411900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gui, H., Wei, B., Zhang, J. et al. Improved charge injection of pentacene transistors by immobilizing DNA on gold source-drain electrodes. Appl. Phys. A 115, 759–763 (2014). https://doi.org/10.1007/s00339-014-8353-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8353-z

Keywords

Navigation