Skip to main content
Log in

Leakage current analysis of La0.67Sr0.33MnO3/Nb:SrTiO3 p–n junctions

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

La0.67Sr0.33MnO3 (LSMO) films were grown on 0.7 wt% Nb-doped SrTiO3 (NSTO) single-crystal substrates by pulsed laser deposition. The crystal phase structure and surface morphology of the LSMO films were investigated by means of X-ray diffraction method and atomic force microscopy, respectively. The diode-like behavior was observed in the leakage currents of the LSMO/NSTO heterojunction, by which IV curves were measured at room temperature. The leakage current of LSMO/NSTO heterojunction follows the space-charge-limited conduction (SCLC) model under lower forward bias. As the forward bias increases, the barrier at the LSMO/NSTO interface becomes narrower and lower, which allows electrons to go over/through the interface barrier by the conduction mechanisms of Schottky emission and interface-limited Fowler–Nordheim tunneling, respectively. Under the same backward bias, the leakage current still undergoes the Ohmic law region according to the SCLC model, which is due to the drift currents of holes in the LSMO films and electrons in the NSTO substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Minohara, I. Ohkubo, H. Kumigashira, M. Oshima, Appl. Phys. Lett. 90, 132123 (2007)

    Article  ADS  Google Scholar 

  2. G. Srinivasan, E.T. Rasmussen, A.A. Bush, K.E. Kamentsev, V.F. Meshcheryakov, Y.K. Fetisov, Appl. Phys. A 78, 721 (2004)

    Article  ADS  Google Scholar 

  3. M. Hambe, A. Petraru, N.A. Pertsev, P. Munroe, V. Nagarajan, H. Kohlstedt, Adv. Func. Mater. 20, 2436 (2010)

    Article  Google Scholar 

  4. G. Kim, D. Mazumdar, A. Gupta, Appl. Phys. Lett. 102, 052908 (2013)

    Article  ADS  Google Scholar 

  5. Y.W. Xie, J.R. Sun, D.J. Wang, D.F. Guo, B.Y. Liang, B.G. Shen, J. Phys. D Appl. Phys. 42, 185008 (2009)

    Article  ADS  Google Scholar 

  6. D. Liu, W. Liu, Ceram. Inter. 37, 3531 (2011)

    Article  Google Scholar 

  7. K.G. Rana, S. Parui, T. Banerjee, Phys. Rev. B 87, 085116 (2013)

    Article  ADS  Google Scholar 

  8. M. Grobosch, K. Dörr, R.B. Gangineni, M. Knupfer, Appl. Phys. A 95, 95 (2009)

    Article  ADS  Google Scholar 

  9. C.Y. Lam, K.H. Wong, J. Eur. Ceram. Soc. 25, 2141 (2005)

    Article  Google Scholar 

  10. R. Bertacco, S. Brivio, M. Cantoni, A. Cattoni, D. Petti, M. Finazzi, F. Ciccacci, Appl. Phys. Lett. 91, 102506 (2007)

    Article  ADS  Google Scholar 

  11. X.W. Wang, Y.Q. Zhang, X. Wang, Z.J. Wang, Y.L. Zhu, Z.D. Zhang, Thin Solid Films 545, 241 (2013)

    Article  ADS  Google Scholar 

  12. V. Garcia, M. Bibes, L. Bocher, S. Valencia, F. Kronast, A. Crassous, X. Moya, S. Enouz-Vedrenne, A. Gloter, D. Imhoff, C. Deranlot, N.D. Mathur, S. Fusil, K. Bouzehouane, A. Barthélémy, Science 327, 1106 (2010)

    Article  ADS  Google Scholar 

  13. S. Maity, A. Dhar, S.K. Ray, D. Bhattacharya, J. Phys. Chem. Solids 72, 804 (2011)

    ADS  Google Scholar 

  14. T. Yoshimura, N. Fujimura, T. Ito, J. Cryst. Growth 174, 790 (1997)

    Article  ADS  Google Scholar 

  15. S.M. Sze, Physics of Semiconductor Devices, 3rd edn. (Wiley, New York, 2006)

    Book  Google Scholar 

  16. A. Ruotolo, C.Y. Lam, W.F. Cheng, K.H. Wong, C.W. Leung, Phys. Rev. B 76, 075122 (2007)

    Article  ADS  Google Scholar 

  17. M.A. Lampert, Rept. Prog. Phys. 27, 229 (1964)

    Article  Google Scholar 

  18. H. Goronkin, J. Appl. Phys. 38, 4547 (1967)

    Article  ADS  Google Scholar 

  19. W. Schottky, Naturwissenschaften 26, 843 (1938)

    Article  ADS  Google Scholar 

  20. H. Schroeder, S. Schmitz, P. Meuffels, Appl. Phys. Lett. 82, 781 (2003)

    Article  ADS  Google Scholar 

  21. V.M. Voora, T. Hofmann, M. Brandt, M. Lorenz, M. Grundmann, N. Ashkenov, M. Schubert, Appl. Phys. Lett. 94, 142904 (2009)

    Article  ADS  Google Scholar 

  22. R.H. Fowler, L. Nordheim, Proc. R. Soc. A 119, 173 (1928)

    Article  ADS  MATH  Google Scholar 

  23. Y.L. Chiou, J.P. Gambino, M. Mohammad, Solid State Electron. 45, 1787 (2001)

    Article  ADS  Google Scholar 

  24. X.S. Fang, L.F. Hu, K.F. Huo, B. Gao, L.J. Zhao, M.Y. Liao, P.K. Chu, Y. Bando, D. Golberg, Adv. Funct. Mater. 21, 3907 (2011)

    Article  Google Scholar 

  25. H.F. Tian, J.R. Sun, H.B. Lu, K.J. Jin, H.X. Yang, H.C. Yu, J.Q. Li, Appl. Phys. Lett. 87, 164102 (2005)

    Article  ADS  Google Scholar 

  26. K. Zhao, K.J. Jin, H.B. Lu, Y.H. Huang, Q.L. Zhou, M. He, Z.H. Chen, Y.L. Zhou, G.Z. Yang, Appl. Phys. Lett. 88, 141914 (2006)

    Article  ADS  Google Scholar 

  27. Z. Luo, P.K.L. Chan, K.L. Jim, C.W. Leung, Phys. B 406, 3104 (2011)

    Article  ADS  Google Scholar 

  28. J.G. Wu, J. Wang, D.Q. Xiao, J.G. Zhu, Mater. Res. Bull. 46, 2183 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Natural Science Foundations of China (Nos. 51272072, 61274010 and 51202062) and Program for New Century Excellent Talents Ministry of Education of China (NCET-09-0135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, R.K., Xia, Z.C., He, Y.B. et al. Leakage current analysis of La0.67Sr0.33MnO3/Nb:SrTiO3 p–n junctions. Appl. Phys. A 116, 1885–1889 (2014). https://doi.org/10.1007/s00339-014-8348-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8348-9

Keywords

Navigation