Skip to main content
Log in

Effect of substrate temperature on the growth of pulsed-laser deposited ZnO nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on the growth of highly c-axis-oriented ZnO nanostructures by pulsed laser deposition technique without using any catalyst. The full-width-at-half-maximum of (002) peak decreased with an increase in substrate temperature. However, a dip at 150 °C is attributed to the contribution from both the small- and large-size particles. FE-SEM images show that the increase in substrate temperature results in the formation of larger particles. Photoluminescence emission is observed both from near band edge as well as defect-related states for all the nanostructures. The presence of E 2(low) and E 2(high) Raman mode intensity and respective increase in the intensity with substrate temperature indicates better crystallinity. Both PL and Raman spectra indicate that A 1(LO) mode may arise due to the defect related to interstitial zinc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.L. Wang, J. Phys. Condens. Matter 16, R829 (2004)

    Article  ADS  Google Scholar 

  2. L. Miao, S. Tanemura, Y. Lada, M. Tanemura, Y. Hayashi, H.Y. Yang, S.P. Lau, B.K. Tay, Y.G. Cao, Surf. Sci. 601, 2660 (2007)

    Article  ADS  Google Scholar 

  3. R.S. Ajimsha, R. Manoj, P.M. Aneesh, M.K. Jayaraj, Curr. Appl. Phys. 10, 693 (2010)

    Article  ADS  Google Scholar 

  4. Y. Zhang, W. Zhang, C. Peng, Opt. Exp. 16, 10696 (2008)

    Article  ADS  Google Scholar 

  5. B. Killic, E. Gur, S. Tuzemen, J. Nanomater. 2012, Article ID 474656

  6. X.B. Li, S.Y. Ma, F.M. Li, Y. Chen, Q.Q. Zhang, X.H. Yang, C.Y. Wang, J. Zhu, Mater. Lett. 100, 119 (2013)

    Article  Google Scholar 

  7. Y. Yang, G. Du, X. Xin, B. Xu, Appl. Phys. A. doi:10.1007/s00339-011-6452-7

  8. D. Panda, T.Y. Tseng, J. Mater. Sci. 48, 6849 (2013)

    Article  ADS  Google Scholar 

  9. C.-Y. Wu, H.-C. Hsu, H.-M. Cheng, S. Yang, W.-F. Hseih, J. Cryst. Growth 287, 189 (2006)

    Article  ADS  Google Scholar 

  10. T.L. Phan, Y. Sun, R. Vincent, J. Korean Phys. Soc. 59, 60 (2011)

    Article  Google Scholar 

  11. M. Pudukudy, Z. Yaakob, Superlattices Microstruct. 63, 47 (2013)

    Article  ADS  Google Scholar 

  12. P. Ghosh, A.K. Sharma, J. Nanomater. 2013, Article ID 480164

  13. J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, Expert Opin. Drug Deliv. 7, 1063 (2010)

    Article  Google Scholar 

  14. K. Pandiadurai, G.K. Mani, P. Shankar, J.B.B. Rayappan, Superlattices Microstruct. 62, 39 (2013)

    Article  ADS  Google Scholar 

  15. M. Benhaliliba, C.E. Benouis, Z. Mouffak, Y.S. Ocak, A. Tiburcio-Silver, M.S. Aida, A.A. Garcia, A. Tavira, A.S. Juarez, Superlattices Microstruct. 63, 228 (2013)

    Article  ADS  Google Scholar 

  16. C.C. Wu, D.S. Wuu, P.R. Lin, T.N. Chen, R.H. Horng, Nanoscale Res. Lett. 4, 377 (2009)

    Article  ADS  Google Scholar 

  17. E.L. Papadopoulou, V. Zorba, A. Pagkozidis, M. Barberoglou, E. Stratakis, C. Fotakis, Thin Solid Films 518, 1267 (2009)

    Article  ADS  Google Scholar 

  18. T. Zhang, Y. Zeng, H.T. Fan, L.J. Wang, R. Wang, W.Y. Fu, H.B. Yang, J. Phys. D Appl. Phys. 42, 045103 (2009)

    Article  ADS  Google Scholar 

  19. S. Kuriakose, N. Bhardwaj, J. Singh, B. Satpati, S. Mohapatra, Beilstein J. Nanotechnol. 4, 763 (2013)

    Article  Google Scholar 

  20. S.S. Kim, B.T. Lee, Thin Solid Films 446, 307 (2004)

    Article  ADS  Google Scholar 

  21. C.-X. Cun, Z.-J. Ping, W.-H. Yang, X.-P. Shou, P.-G. Qiang, Chin. Phys. B 20, 096102 (2011)

    Article  ADS  Google Scholar 

  22. M. Liu, X.Q. Wei, Z.G. Zhang, G. Sun, C.S. Chen, C.S. Xue, H.Z. Zhuang, B.Y. Man, Appl. Surf. Sci. 252, 4321 (2006)

    Article  ADS  Google Scholar 

  23. V. Gupta, A. Mansingh, J. Appl. Phys. 80, 1063 (1996)

    Article  ADS  Google Scholar 

  24. P. Ghosh, A.K. Sharma, Appl. Phys. A. doi:10.1007/s00339-013-8054-z

  25. J. Li, H. Fan, X. Jia, J. Chen, Z. Cao, X. Chen, J. Alloy. Compd. 481, 735 (2009)

    Article  Google Scholar 

  26. S. Chakraborty, P. Kumbhakar, Mater. Lett. 100, 40 (2013)

    Article  Google Scholar 

  27. B.S. Li, Y.C. Liu, Z.Z. Zhi, D.Z. Shen, Y.M. Lu, J.Y. Zhang, X.W. Fan, J. Cryst. Growth 240, 479 (2002)

    Article  ADS  Google Scholar 

  28. N.R. Panda, B.S. Acharya, P. Nayak, Mater. Lett. 100, 257 (2013)

    Article  Google Scholar 

  29. S.K. Panda, C. Jacob, Appl. Phys. A 96(805), 805 (2009)

    Article  ADS  Google Scholar 

  30. Y.H. Yang, Y. Feng, G.W. Yang, Appl. Phys. A 102, 319 (2011)

    Article  ADS  Google Scholar 

  31. P.K. Samanta, S.K. Patra, A. Ghosh, P. Roy Chaudhuri, Int. J. Nanosci. Nanotechnol. 1, 81 (2009)

    Google Scholar 

  32. L.-L. Yang, J.-H. Yang, D.-D. Wang, Y.-J. Zhang, Y.-X. Wang, H.-L. Liu, H.-G. Fan, J.-H. Lang, Physica E 40, 920 (2008)

    Article  ADS  Google Scholar 

  33. R. Zhang, P.G. Yin, N. Wang, L. Guo, Solid State Sci. 11, 865 (2009)

    Article  ADS  Google Scholar 

  34. F. Guell, J.O. Osso, A.R. Goni, A. Cornet, J.R. Morante, Superlattices Microstruct. 45, 271 (2009)

    Article  ADS  Google Scholar 

  35. M. Koyano, P. QuocBao, L.T. ThanhBinh, L. HongHa, N. NgocLong, S.I. Katayama, Phys. Status Solidi A 193, 125 (2002)

    Article  ADS  Google Scholar 

  36. X. Zhu, H.-Z. Wu, D.-J. Qiu, Z. Yuan, G. Jin, J. Kong, W. Shen, Opt. Commun. 283, 2695 (2010)

    Article  ADS  Google Scholar 

  37. X.L. Xu, S.P. Lau, J.S. Chen, G.Y. Chen, B.K. Tay, J. Cryst. Growth 223, 201 (2001)

    Article  ADS  Google Scholar 

  38. G.J. Exarhos, S.K. Sharma, Thin Solid Films 270, 27 (1995)

    Article  ADS  Google Scholar 

  39. B. Yang, A. Kumar, P. Feng, R.S. Katiyar, Appl. Phys. Lett. 92, 233112 (2008)

    Article  ADS  Google Scholar 

  40. N. Ashkenov, B.N. Mbenkum, C. Bundesmann, V. Riiede, M. Lorenz, D. Spemann, E.M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, V. Darakchieva, H. Arwin, B. Monemar, J. Appl. Phys. 93, 126 (2003)

    Article  ADS  Google Scholar 

  41. S.B. Yahia, L. Znaidi, A. Kanaev, J.P. Petitet, Spectrochim. Acta Part A 71, 1234 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Poulami Ghosh thanks Council of Scientific and Industrial Research (CSIR), New Delhi, for the financial assistance. Central Instruments Facility (CIF), IIT Guwahati, is acknowledged for the FE-SEM and Raman measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwini Kumar Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, P., Sharma, A.K. Effect of substrate temperature on the growth of pulsed-laser deposited ZnO nanostructures. Appl. Phys. A 116, 1877–1884 (2014). https://doi.org/10.1007/s00339-014-8347-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8347-x

Keywords

Navigation