Applied Physics A

, Volume 116, Issue 4, pp 1867–1875 | Cite as

Investigation of the spontaneous emission rate of perylene dye molecules encapsulated into three-dimensional nanofibers via FLIM method

  • Sabriye AcikgozEmail author
  • Mustafa M. Demir
  • Ece Yapasan
  • Alper Kiraz
  • Ahmet A. Unal
  • M. Naci Inci


The decay dynamics of perylene dye molecules encapsulated in polymer nanofibers produced by electrospinning of polymethyl methacrylate are investigated using a confocal fluorescence lifetime imaging microscopy technique. Time-resolved experiments show that the fluorescence lifetime of perylene dye molecules is enhanced when the dye molecules are encapsulated in a three-dimensional photonic environment. It is hard to produce a sustainable host with exactly the same dimensions all the time during fabrication to accommodate dye molecules for enhancement of spontaneous emission rate. The electrospinning method allows us to have a control over fiber diameter. It is observed that the wavelength of monomer excitation of perylene dye molecules is too short to cause enhancement within nanofiber photonic environment of 330 nm diameters. However, when these nanofibers are doped with more concentrated perylene, in addition to monomer excitation, an excimer excitation is generated. This causes observation of the Purcell effect in the three-dimensional nanocylindrical photonic fiber geometry.


PMMA Fluorescence Lifetime Perylene Whisper Gallery Mode Average Fiber Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by TUBITAK under contract number 106T011, Bogazici University and Karamanoğlu Mehmetbey Universities Research Funds under contract numbers 13B03P4 and 01-M-13, respectively.


  1. 1.
    R. Carminati, J.J. Greffet, C. Henkel, J.M. Vigoureux, Opt. Commun. 261, 368 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    C. Dekker, Phys. Today 52, 22 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    V.V. Klimov, M. Ducloy, Phys. Rev. A 69, 13812 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    E.M. Purcell, Phys. Rev. 69, 681 (1946)CrossRefGoogle Scholar
  5. 5.
    R.G. Hulet, E.S. Hilfer, D. Kleppner, Phys. Rev. Lett. 55(20), 2137 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    F. De Martini, G. Innocenti, G.R. Jacobovitz, P. Mataloni, Phys. Rev. Lett. 59, 2955 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    H.B. Lin, J.D. Eversole, C.D. Meritt, A.J. Campillo, Phys. Rev. A 45, 6756 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    N. Tomczak, S. Gu, M. Han, N.F. Hulst, G.J. Vancso, Eur. Polym. J. 42, 2205 (2006)CrossRefGoogle Scholar
  9. 9.
    V.J. Sorger, N. Pholchai, E. Cubukcu, R.F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, X. Zhang, Nano Lett. 11, 4907 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    H. Yu, H. Wang, T. Li, R. Che, Appl. Phys. A 108, 223 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    K.J. Lee, J.H. Oh, Y. Kim, J. Jang, Adv. Mater. 18, 2216 (2006)CrossRefGoogle Scholar
  12. 12.
    X. Liu, X. Zhang, R. Lu, P. Xue, D. Xu, H. Zhou, J. Mater. Chem. 21, 8756 (2011)CrossRefGoogle Scholar
  13. 13.
    B. Law, R. Weissleder, C.H. Tung, Bioconjug. Chem. 18, 1701 (2007)CrossRefGoogle Scholar
  14. 14.
    B. Ding, W. Zhu, X. Jiaing, Z. Zhang, Solid State Commun. 148(5), 226 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    K.A. Nelson, D.D. Dlott, M.D. Fayer, Chem. Phys. Lett. 64(1), 88 (1979)ADSGoogle Scholar
  16. 16.
    W. Tuntiwechapikul, M. Salazar, Biochemistry 40, 13652 (2001)CrossRefGoogle Scholar
  17. 17.
    W. Tuntiwechapikul, T. Taka, M. Béthencourt, L. Makonkawkeyoon, L.T. Randall, Bioorg. Med. Chem. Lett. 16, 4120 (2006)CrossRefGoogle Scholar
  18. 18.
    R. Katoh, S. Sinha, S. Murata, M. Tachiya, J. Photochem. Photobiol. A 145, 23 (2001)CrossRefGoogle Scholar
  19. 19.
    H. Auweter, D. Ramer, B. Kunze, H.C. Wolf, Chem. Phys. Lett. 85(3), 325 (1982)ADSGoogle Scholar
  20. 20.
    H. Nishimura, A. Matsui, M. Iemura, J. Phys. Soc. Jpn. 51, 1341 (1982)ADSCrossRefGoogle Scholar
  21. 21.
    H. Tachikawa, L.R. Faulkner, Chem. Phys. Lett. 39, 436 (1976)ADSGoogle Scholar
  22. 22.
    Z. Salamon, H. Bassler, Chem. Phys. 100, 393 (1985)ADSGoogle Scholar
  23. 23.
    D. Weiss, R. Kietzmann, J. Mahrt, B. Tufts, W. Storck, F. Willing, J. Phys. Chem. 96, 5320 (1992)Google Scholar
  24. 24.
    S. Akimoto, A. Ohmori, I. Yamazaki, J. Phys. Chem. B 101, 3753 (1997)Google Scholar
  25. 25.
    D.H. Reneker, A.L. Yarin, E. Zussman, H. Xu, Adv. Appl. Mech. 41, 43 (2006)CrossRefGoogle Scholar
  26. 26.
    H. Matsumoto, A. Tanioka, Membranes 1(3), 249 (2011)CrossRefGoogle Scholar
  27. 27.
    W. Liu, S. Thomopoulos, Y. Xia, Adv. Healthc. Mater. 1, 10 (2012)CrossRefGoogle Scholar
  28. 28.
    R. Vasita, D.S. Katti, Int. J. Nanomed. 1(1), 15 (2006)CrossRefGoogle Scholar
  29. 29.
    D.G. Yu, L.M. Zhu, K. White, C.B. White, Health 1(2), 67 (2009)CrossRefGoogle Scholar
  30. 30.
    X.H. Qin, S.Y. Wang, J. Appl. Polym. Sci. 102, 1285 (2006)CrossRefGoogle Scholar
  31. 31.
    B. Ding, M. Wang, J. Yu, G. Sun, Sensors 9, 1609 (2009)CrossRefGoogle Scholar
  32. 32.
    V. Thavasi, G. Singh, S. Ramakrishna, Energy Environ. Sci. 1, 205 (2008)CrossRefGoogle Scholar
  33. 33.
    M.M. Demir, I. Yilgor, E. Yilgor, B. Erman, Polymer 43(11), 3303 (2002)CrossRefGoogle Scholar
  34. 34.
    National Institutes of Health: Public domain software to be downloaded from
  35. 35.
    A.G. Vitukhnovsky, M.I. Such, J.G. Warren, M.C. Petty, Chem. Phys. Lett. 184, 235 (1991)ADSGoogle Scholar
  36. 36.
    V.B. Braginsky, M.L. Gorodetsky, V.S. Ilchenko, Phys. Lett. A 137, 393 (1989)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sabriye Acikgoz
    • 1
    • 2
    Email author
  • Mustafa M. Demir
    • 3
  • Ece Yapasan
    • 4
  • Alper Kiraz
    • 5
  • Ahmet A. Unal
    • 6
  • M. Naci Inci
    • 1
  1. 1.Department of PhysicsBogazici UniversityIstanbulTurkey
  2. 2.Department of Material Science and EngineeringKaramanoğlu Mehmetbey UniversityKaramanTurkey
  3. 3.Department of Materials Science and EngineeringIzmir Institute of TechnologyIzmirTurkey
  4. 4.Department of ChemistryIzmir Institute of TechnologyIzmirTurkey
  5. 5.Department of PhysicsKoc UniversityIstanbulTurkey
  6. 6.Helmholtz-Zentrum Berlin für Materialien und EnergieBerlinGermany

Personalised recommendations