Skip to main content
Log in

Effect of magnetic field annealing and size on the giant magnetoimpedance in micro-patterned Co-based ribbon with a meander structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Micro-patterned Co-based amorphous ribbons (Metglas® 2714A) with a meander structure are fabricated by MEMS technology and the giant magnetoimpedance (GMI) effects are measured at different magnetic fields and frequencies. The effect of magnetic field annealing and size (line width and line length) on the GMI effect is investigated. It is found that the GMI effect in the transverse magnetic field-annealed state is larger than that in longitudinal magnetic field-annealed state and nonfield-annealed state. The maximum GMI effect increases from 82 % for the sample with 5 mm length to 150 % for the sample with 10 mm length, and the maximum GMI effect decreases with the increase of the line width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.V. Panina, K. Mohri, Appl. Phys. Lett. 65, 1189 (1994)

    ADS  Google Scholar 

  2. P. Ripka, Magnetic Sensors and Magnetometers (Artech House Publishers, Boston, 2001), pp. 350–359

  3. J.P. Sinnecker, M. Nobel, K.R. Pirota, J.M. Garcia, A. Asenjo, M. Vazquez, J. Appl. Phys. 87, 4825 (2000)

    ADS  Google Scholar 

  4. T. Morikawa, Y. Nishibe, H. Yamadera, Y. Nonomura, M. Takeuchi, J. Sakata, IEEE Trans. Magn. 32, 4965 (1996)

    ADS  Google Scholar 

  5. R.L. Sommer, C.L. Chine, Appl. Phys. Lett. 47, 3346 (1995)

    ADS  Google Scholar 

  6. Y. Zhou, J.Q. Yu, X.L. Zhao, B.C. Cai, J. Appl. Phys. 89, 1961 (2001)

    Google Scholar 

  7. F. Alves, L. Abi Rached, J. Moutoussamy, C. Coillot, Sens. Acta A 142, 459 (2008)

    Google Scholar 

  8. K.S. Byon, S.C. Yu, C.G. Kim, J. Appl. Phys. 89, 7218 (2001)

    ADS  Google Scholar 

  9. M.H. Phan, H.X. Peng, M.R. Wisnom, S.C. Yu, N.H. Nghi, C.G. Kim, Sens. Actuators A 129, 62 (2006)

    Google Scholar 

  10. J. Hu, S.X. Zhou, L.H. Zhang, H.X. Wang, Mater. Sci. Eng. B 68, 63 (1999)

    Google Scholar 

  11. A. Talaat, M. Ipatov, V. Zhukova, A.P. Zhukov, J. González, L. González-Legarreta, V.M. Prida, B. Hernando, J. Appl. Phys. 114, 023904 (2013)

    ADS  Google Scholar 

  12. D.M. Chen, D.W. Xing, F.X. Qin, J.S. Liu, H. Wang, X.D. Wang, J.F. Sun, Phys Status Solidi A 210, 2515–2520 (2013)

    Google Scholar 

  13. V.M. Prida, M.L. Sánchez, B. Hernando, P. Gorria, M. Tejedor, M. Vazquez, Appl. Phys. A 77, 135–140 (2003)

    ADS  Google Scholar 

  14. K.R. Pirota, L. Kraus, H. Chiriac, M. Knobel, J. Magn. Magn. Mater. 226–230, 730–732 (2001)

    Google Scholar 

  15. K.J. Jang, C.G. Kim, S.S. Yoon, S.C. Yu, J. Magn. Magn. Mater. 215–216, 488–491 (2000)

    Google Scholar 

  16. C.G. Kim, K.J. Jang, D.Y. Kim, S.S. Yoon, Appl. Phys. Lett. 75, 2114 (1999)

    ADS  Google Scholar 

  17. M.A. Rivero, M. Maicas, E. Lopez, C. Aroca, M.C. Sanchez, P. Sanchez, J. Magn. Magn. Mater. 255, 636–638 (2003)

    ADS  Google Scholar 

  18. M.H. Phan, H.X. Peng, S.C. Yu, M.R. Wisnom, J. Magn. Magn. Mater. 316(2), e253 (2007)

    ADS  Google Scholar 

  19. L. Chen, Y. Zhou, C. Lei, Z.M. Zhou, Mater. Sci. Eng. B 172, 101–107 (2010)

    Google Scholar 

  20. L. Chen, Y. Zhou, C. Lei, Z.M. Zhou, Appl. Phys. A 98, 861 (2010)

    ADS  Google Scholar 

  21. W.J. Ku, F.D. Ge, J. Zhu, J. Appl. Phys. 82, 5050 (1997)

    ADS  Google Scholar 

  22. K.J. Jang, C.G. Kim, S.S. Yoon, K.H. Shin, IEEE Trans. Magn. 35, 3889 (1999)

    ADS  Google Scholar 

  23. L. Chen, Y. Zhou, Z.M. Zhou, W. Ding, J. Phys. D Appl. Phys. 42, 145005 (2009)

    ADS  Google Scholar 

  24. L. Chen, Y. Zhou, Z.M. Zhou, W. Ding, Phys. Status Solidi A 206, 1594 (2009)

    ADS  Google Scholar 

  25. Bu Yu Geliang, Xiang Chao XiongZhu, Xu Hong, Sens. Actuators A 161, 72–77 (2010)

    Google Scholar 

  26. G. Kurlyandskaya, V. Levit, Biosens. Bioelectron. 20, 1611–1616 (2005)

    Google Scholar 

  27. F. Amalou, M.A.M. Gijs, J. Appl. Phys. 90, 3466 (2001)

    ADS  Google Scholar 

  28. I. Betancourt, F. Vazquez. J. Appl. Phys. 101 (5), 053917/1–053917/4 (2007)

Download references

Acknowledgments

This work was supported by The National Natural Science Foundation of China (No. 61074168 and No. 61273065), National Science and Technology Support Program (2012BAK08B05), National Key Laboratory Research Fund (9140C790403110C7905), Natural Science Foundation of Shanghai (13ZR1420800) and the Analytical and Testing Center in Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chong Lei or Yong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z., Lei, J., Lei, C. et al. Effect of magnetic field annealing and size on the giant magnetoimpedance in micro-patterned Co-based ribbon with a meander structure. Appl. Phys. A 116, 1847–1851 (2014). https://doi.org/10.1007/s00339-014-8343-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8343-1

Keywords

Navigation