Skip to main content
Log in

Nano- and femtosecond UV laser pulses to immobilize biomolecules onto surfaces with preferential orientation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

By relying on the photonic immobilization technique of antibodies onto surfaces, we realized portable biosensors for light molecules based on the use of quartz crystal microbalances, given the linear dependence of the method on the laser pulse intensity. Here, we compare the quality of the anchoring method when using nanosecond (260 nm, 25 mJ/pulse, 5 ns, 10 Hz rep. rate) and femtosecond (258 nm, 25 μJ/pulse, 150 fs, 10 kHz rep. rate) laser source, delivering the same energy to the sample with the same average power. As a reference, we also tethered untreated antibodies by means of the passive adsorption. The results are striking: When the antibodies are irradiated with the femtosecond pulses, the deposition on the gold plate is much more ordered than in the other two cases. The effects of UV pulses irradiation onto the antibodies are also analyzed by measuring absorption and fluorescence and suggest the occurrence of remarkable degradation when nanosecond pulses are used likely induced by a larger thermal coupling. In view of the high average power required to activate the antibodies for the achievement of the photonic immobilization technique, we conclude that femtosecond rather than nanosecond laser pulses have to be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.L. Arlett, E.B. Myers, M.L. Roukes, Nat. Nanotechnol. 6(4), 203–215 (2011)

    Article  ADS  Google Scholar 

  2. B. Della Ventura, L. Schiavo, C. Altucci, R. Esposito, R. Velotta, Biomed. Opt. Expr. 2(11), 3223–3231 (2011)

    Article  Google Scholar 

  3. J. Cheng, G. Zhu, L. Wu, X. Du, H. Zhang, B. Wolfrum, Q. Jin, J. Zhao, A. Offenhäuser, Y. Xu, J. Neurosci. Methods 213(2), 196–203 (2013)

    Article  Google Scholar 

  4. M.T. Neves-Petersen, T. Snabe, S. Klitgaard, M. Duroux, S.B. Petersen, Protein Sci. 15(2), 343–351 (2006)

    Article  Google Scholar 

  5. R. Funari, B. Della Ventura, L. Schiavo, R. Esposito, C. Altucci, R. Velotta, Anal. Chem. 85, 6392–6397 (2013)

    Article  Google Scholar 

  6. M.T. Neves-Petersen, Z. Gryczynski, Z. Fojan, S. Pedersen, E. Petersen, S.B. Petersen, Protein Sci. 11, 588–600 (2002)

    Article  Google Scholar 

  7. C. Russmann, M. Beato, J. Stollhof, C. Weiss, R. Beigang, Nucl. Acid Res. 26, 3697 (1998)

    Article  Google Scholar 

  8. C. Altucci, A. Nebbioso, R. Benedetti, R. Esposito, V. Carafa, M. Conte, M. Micciarelli, L. Altucci, R. Velotta, Laser Phys. Lett. 9, 234–239 (2012)

    Article  ADS  Google Scholar 

  9. F. Caruso, E. Rodda, D.N. Furlong, J. Colloid Interface Sci. 178, 104–115 (1996)

    Article  Google Scholar 

  10. J. Pribyl, M. Hepel, J. Halámek, P. Skládal, Sens. Actuators, B 91, 333–341 (2003)

    Article  Google Scholar 

  11. R. Hao, D. Wang, X. Zhang, G. Zuo, H. Wei, R. Yang, Z. Zhang, Z. Cheng, Y. Guo, Z. Cui, Y. Zhou, Biosens. Bioelectron. 24, 1330–1335 (2009)

    Article  Google Scholar 

  12. H. Sharma, R. Mutharasan, Anal. Chem. 85, 2472–2477 (2013)

    Article  Google Scholar 

  13. G.L. Ellman, Arch. Biochem. Biophys. 82, 70–77 (1959)

    Article  Google Scholar 

  14. C. Davies, The immunoassay handbook (Stockton Press, New York, 1994)

    Google Scholar 

  15. P. Peluso, D.S. Wilson, D. Do, H. Tran, M. Venkatasubbaiah, D. Quincy, B. Heidecker, K. Poindexter, N. Tolani, M. Phelan, K. Witte, L.S. Jung, P. Wagner, S. Nock, Anal. Biochem. 312, 113–124 (2003)

    Article  Google Scholar 

  16. P. Garidel, M. Hegyi, S. Bassarab, M. Weichel, Biotechnol. J. 3, 1201–1211 (2008)

    Article  Google Scholar 

  17. C.A. Janeway Jr., P. Travers, M. Walport, and M.J. Schlomchiket, Immunobiology, Garland Science Ed. (2001)

  18. J.R. Lakowicz, Principles of fluorescence spectroscopy, 3rd edn. (Springer, New York, 2006)

    Book  Google Scholar 

  19. C. Consani, G. Auböck, F. van Mourik, M. Chergui, Science 339, 1586–1589 (2013)

    Article  ADS  Google Scholar 

  20. J. Léonard, E. Portuondo-Campa, A. Cannizzo, F. Van Mourik, G. Van der Zwan, J. Tittor, S. Haacke, M. Chergui, Proc. Nat. Ac. Sci. 106, 7718–7723 (2009)

    Article  ADS  Google Scholar 

  21. S.B. Hansen, Z. Radi¢, T.T. Talley, B.E. Molles, T. Deerinck, I. Tsigelny, P. Taylor, J. Biol. Chem. 277, 41299–41302 (2002)

    Article  Google Scholar 

  22. J.R. Albani, J. Fluoresc. 19, 1061–1071 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

Partial funding for this research was provided by the Italian Ministry for Research and Education through the Grant PON01_01517.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Altucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lettieri, S., Avitabile, A., Della Ventura, B. et al. Nano- and femtosecond UV laser pulses to immobilize biomolecules onto surfaces with preferential orientation. Appl. Phys. A 117, 185–190 (2014). https://doi.org/10.1007/s00339-014-8340-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8340-4

Keywords

Navigation