Skip to main content
Log in

Optimization of transverse electric peak-type metal-clad waveguide sensor using double-negative materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In a very recent work, a transverse electric peak-type metal-clad waveguide optical sensor was proposed in which a double-negative material (DNM) was used as a guiding layer. The sensor was found to exhibit a considerable angular shift of the reflectance peak for small changes in the refractive index of the analyte, due to the DNM layer. In this work, the optimization of the structure parameters is investigated to find out the most appropriate metal and its optimal thickness. Moreover, the optimal DNM layer parameters corresponding to the highest sensitivity are explored. Our calculations reveal that metals with high absolute value of the real part of the permittivity correspond to sharper peaks. Moreover, as the absolute value of the real part of both ε and μ of the DNM increases, the reflectance peak becomes sharper and the dip following the peak becomes deeper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H.M. Kullab, S.A. Taya, Int. J. Electron. Commun. (AEÜ) 67, 905 (2013)

    Article  Google Scholar 

  2. H.M. Kullab, S.A. Taya, Optik 145, 97 (2014)

    Article  ADS  Google Scholar 

  3. N. Skivesen, R. Horvath, H. Pedersen, Sens. Actuat. B 106, 668 (2005)

    Article  Google Scholar 

  4. N. Skivesen, R. Horvath, H. Pedersen, Opt. Lett. 30, 1659 (2005)

    Article  ADS  Google Scholar 

  5. G. Tollin, Z. Salamon, Biophys. J. 80, 1557 (2001)

    Article  Google Scholar 

  6. Z. Salamon, G. Lindblom, G. Tollin, Biophys. J. 84, 1796 (2003)

    Article  ADS  Google Scholar 

  7. M. Zourob, N. Goddard, Biosens. Bioelectron. 20, 1718 (2005)

    Article  Google Scholar 

  8. E. Kretchmann, H. Reather, Z. Naturforsch. A 23, 2135 (1968)

    Google Scholar 

  9. V. Veselago, Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  10. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001)

    Article  ADS  Google Scholar 

  11. D.R. Smith, N. Kroll, Phys. Rev. Lett. 85, 2933 (2000)

    Article  ADS  Google Scholar 

  12. R. Ruppin, Phys. Lett. A 227, 1811 (2000)

    Google Scholar 

  13. K. Park, B.J. Lee, C. Fu, Z.M. Zhang, J. Opt. Soc. Am. B 22, 1016 (2005)

    Article  ADS  Google Scholar 

  14. S.A. Taya, H.M. Kullab, I.M. Qadoura, J. Opt. Soc. Am. B 30, 2008 (2013)

    Article  ADS  Google Scholar 

  15. S.A. Taya, E.J. El-Farram, M.M. Abadla, Optik 123, 2264 (2012)

    Article  ADS  Google Scholar 

  16. S.A. Taya, I.M. Qadoura, Optik 124, 1431 (2013)

    Article  ADS  Google Scholar 

  17. I.M. Qadoura, S.A. Taya, K.Y. El-wasife, Int. J. Microw. Opt. Technol. (IJMOT) 7, 349 (2012)

    Google Scholar 

  18. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000)

    Article  ADS  Google Scholar 

  19. A. Grbic, G.V. Eleftheriades, Appl. Phys. Lett. 82, 1815 (2003)

    Article  ADS  Google Scholar 

  20. D.K. Qing, G. Chen, Appl. Phys. Lett. 21, 669 (2003)

    Google Scholar 

  21. A. Alu, N. Engheta, Phys. Rev. E 72, 016623 (2005)

    Article  ADS  Google Scholar 

  22. H.M. Kullab, S.A. Taya, T.M. El-Agez, J. Opt. Soc. Am. B 29, 959 (2012)

    Article  ADS  Google Scholar 

  23. L. Shen, J. Qiu, Z. Wang, Progress In Electromagnetics Research Symposium Proceedings, Suzhou, China, pp. 1043–1048, (2011)

  24. O. Voskoboynikova, G. Dyankova, C.M. Wijersb, Microelect. J. 36, 564 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofyan A. Taya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taya, S.A., Kullab, H.M. Optimization of transverse electric peak-type metal-clad waveguide sensor using double-negative materials. Appl. Phys. A 116, 1841–1846 (2014). https://doi.org/10.1007/s00339-014-8338-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8338-y

Keywords

Navigation