Skip to main content

Advertisement

Log in

A novel strongly correlated electronic thin-film laser energy/power meter based on anisotropic Seebeck effect

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Strongly correlated electronic (SCE) materials including high-temperature superconducting cuprate and colossal magnetoresistance manganite thin films demonstrate tremendous anisotropic Seebeck effect which makes them very promising for developing high-performance laser detectors. In this work, laser-induced thermoelectric voltage (LITV) signals with nanosecond response time have been measured in SCE La1−x Pb x MnO3 thin films based on anisotropic Seebeck effect at room temperature. The magnitude of the LITV signals increases linearly with laser energy/power density in a wide range of laser wavelengths from ultraviolet, visible to infrared based on which a novel SCE thin-film laser energy/power meter has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.Y. Zhang, P.X. Zhang, H.-U. Habermeier, in Handbook of Interferometers; Research, Technology and Applications, ed. by D. Halsey, W. Raynor (Nova Science, New York, 2009)

  2. E. Dagotto, Science 309, 257 (2005)

    Article  ADS  Google Scholar 

  3. Y. Tokura, N. Nagaosa, Science 288, 462 (2000)

    Article  ADS  Google Scholar 

  4. A. Shekhter, B.J. Ramshaw, R.X. Liang, W.N. Hardy, D.A. Bonn, F.F. Balakirev, R.D. McDonald, J.B. Betts, S.C. Riggs, A. Migliori, Nature 498, 75 (2013)

    Article  ADS  Google Scholar 

  5. H.-C. Jiang, M.S. Block, R.V. Mishmash, J.R. Garrison, D.N. Sheng, O.I. Motrunich, M.P.A. Fisher, Nature 493, 39 (2013)

    Article  ADS  Google Scholar 

  6. C.L. Smallwood, J.P. Hinton, C. Jozwiak, W.T. Zhang, J.D. Koralek, H. Eisaki, D.H. Lee, J. Orenstein, A. Lanzara, Science 336, 1137 (2012)

    Article  ADS  Google Scholar 

  7. K.J. Lai, M. Nakamura, W. Kundhikanjana, M. Kawasaki, Y. Tokura, M.A. Kelly, Z.X. Shen, Science 329, 190 (2010)

    Article  ADS  Google Scholar 

  8. K.H. Ahn, T. Lookman, A.R. Bishop, Nature 428, 401 (2004)

    Article  ADS  Google Scholar 

  9. C.H. Ahn, J.M. Triscone, J. Mannhart, Nature 424, 1015 (2003)

    Article  ADS  Google Scholar 

  10. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264, 413 (1994)

    Article  ADS  Google Scholar 

  11. M. Eichberger, H. Schäfer, M. Krumova, M. Beyer, J. Demsar, H. Berger, G. Moriena, G. Sciaini, R.J.D. Miller, Nature 468, 799 (2010)

    Article  ADS  Google Scholar 

  12. N. Nagaosa, Science 275, 1078 (1997)

    Article  Google Scholar 

  13. Y. Tokura, Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999)

    Article  ADS  Google Scholar 

  14. C.N.R. Rao, J. Phys. Chem. B 104, 5877 (2000)

    Article  Google Scholar 

  15. A.J. Millis, Nature 392, 147 (1998)

    Article  ADS  Google Scholar 

  16. L.P. Gor’kov, V.Z. Kresin, Phys. Rep. 400, 149 (2004)

    Article  ADS  Google Scholar 

  17. N. Chau, H.N. Nhat, N.H. Luong, D.L. Minh, N.D. Tho, N.N. Chau, Phys. B 327, 270 (2003)

    Article  ADS  Google Scholar 

  18. G.H. Jonker, J.H. Van Santen, Physica 16, 337 (1950)

    Article  ADS  Google Scholar 

  19. S. Sundar Manoharan, N.Y. Vasanthacharya, M.S. Hegde, K.M. Satyalakshmi, V. Prasad, S.V. Subramanyam, J. Appl. Phys. 76, 3923 (1994)

    Article  ADS  Google Scholar 

  20. E. Vladimirova, V. Vassiliev, A. Nossov, J. Mater. Sci. 36, 1481 (2001)

    Article  ADS  Google Scholar 

  21. A.M. Niraimathi, M. Hofmann, Phys. B 276–278, 722 (2000)

    Article  Google Scholar 

  22. R. Mahendiran, R. Mahesh, A.K. Raychaudhuri, C.N.R. Rao, J. Phys. D 28, 1743 (1995)

    Article  ADS  Google Scholar 

  23. E. Burzo, I. Balasz, I.G. Deac, M. Neumann, R. Tetean, Phys. B 403, 1601 (2008)

    Article  ADS  Google Scholar 

  24. T.L. Phan, S.G. Min, M.H. Phan, N.D. Ha, N. Chau, S.C. Yu, Phys. Stat. Sol. (b) 244, 1109 (2007)

    Article  ADS  Google Scholar 

  25. A.V. Kartashev, E.A. Mikhaleva, M.V. Gorev, E.V. Bogdanov, A.V. Cherepakhin, K.A. Sablina, N.V. Mikhashonok, I.N. Flerov, N.V. Volkov, J. Appl. Phys. 113, 073901 (2013)

    Article  ADS  Google Scholar 

  26. C.L. Chang, A. Kleinhammes, W.G. Moulton, L.R. Testardi, Phys. Rev. B 41, 11564 (1990)

    Article  ADS  Google Scholar 

  27. H. Lengfellner, G. Kremb, A. Schnellbogl, J. Betz, K.F. Renk, W. Prettl, Appl. Phys. Lett. 60, 501 (1992)

    Article  ADS  Google Scholar 

  28. W.M. Huber, S.T. Li, A. Ritzer, D. Bäuerle, H. Lengfellner, W. Prettl, Appl. Phys. A 64, 487 (1997)

    Article  ADS  Google Scholar 

  29. H.-U. Habermeier, N. Jisrawi, G. Jäger-Waldau, Appl. Surf. Sci. 96–98, 689 (1996)

    Article  Google Scholar 

  30. S. Zeuner, W. Prettl, H. Lengfellner, Appl. Phys. Lett. 66, 1833 (1995)

    Article  ADS  Google Scholar 

  31. P.X. Zhang, G.Y. Zhang, C.T. Lin, H.-U. Habermeier, Egypt. J. Sol. 27, 1 (2004)

    Google Scholar 

  32. K.F. Renk, J. Betz, S. Zeuner, H. Lengfellner, W. Prettl, Phys. C 235–240, 37 (1994)

    Article  Google Scholar 

  33. H.-U. Habermeier, X.H. Li, P.X. Zhang, B. Leibold, Solid State Commun. 110, 473 (1999)

    Article  ADS  Google Scholar 

  34. X.H. Li, H.-U. Habermeier, P.X. Zhang, J. Magn. Magn. Mater. 211, 232 (2000)

    Article  ADS  Google Scholar 

  35. G.Y. Zhang, H.R. Zheng, X.Y. Zhang, D.L. Gao, P.X. Zhang, H.U. Habermeier, Appl. Phys. B 108, 649 (2012)

    Article  ADS  Google Scholar 

  36. Th Zahner, R. Stierstorfer, S. Reindl, T. Schauer, A. Penzkofer, H. Lengfellner, Phys. C 313, 37 (1999)

    Article  ADS  Google Scholar 

  37. P.X. Zhang, X.M. Wen, M.M. Gu, G.Y. Zhang, Chin. J. Lasers 29, 205 (2002)

    Google Scholar 

  38. G.Y. Zhang, H.R. Zheng, W.H. Huang, X.Y. Zhang, D.L. Gao, H. Zhang, P.X. Zhang, T.Y. Tseng, H.U. Habermeier, C.T. Lin, H.H. Cheng, Appl. Phys. A 113, 347 (2013)

    Article  ADS  Google Scholar 

  39. P.X. Zhang, W.K. Lee, G.Y. Zhang, Appl. Phys. Lett. 81, 4026 (2002)

    Article  ADS  Google Scholar 

  40. S.L. Tan, H. Zhang, W.D. Cui, Y. Yuan, P.X. Zhang, Acta Phys. Sin. 55, 4226 (2006)

    Google Scholar 

  41. N. Mtiraoui, A. Dhahri, M. Oumezine, J. Dhahri, E. Dhahri, J. Magn. Magn. Mater. 323, 22 (2011)

    Article  Google Scholar 

  42. C.W. Searle, S.T. Wang, Can. J. Phys. 48, 2023 (1970)

    Article  ADS  Google Scholar 

  43. J.-H. Park, E. Vescovo, H.-J. Kim, C. Kwon, R. Ramesh, T. Venkatesan, Nature 392, 794 (1998)

    Article  ADS  Google Scholar 

  44. J.-H. Park, C.T. Chen, S.-W. Cheong, W. Bao, G. Meigs, V. Chakarian, Y.U. Idzerda, Phys. Rev. Lett. 76, 4215 (1996)

    Article  ADS  Google Scholar 

  45. A.J. Nozik, Phys. E 14, 115 (2002)

    Article  Google Scholar 

  46. G. Conibeer, Mater. Today 10, 42 (2007)

    Article  Google Scholar 

  47. W. Lang, K. Kühl, H. Sandmaier, Sens. Actuators A 34, 243 (1992)

    Article  Google Scholar 

  48. S.B. Rim, S. Zhao, S.R. Scully, M.D. McGehee, P. Peumans, Appl. Phys. Lett. 91, 243501 (2007)

    Article  ADS  Google Scholar 

  49. J. Zhao, A. Wang, P. Altermatt, M.A. Green, Appl. Phys. Lett. 66, 3636 (1995)

    Article  ADS  Google Scholar 

  50. J.T. Hu, H.S. Li, J. Zhu, G.Y. Zhang, P.X. Zhang, Chin. J. Lasers 36, 1214 (2009)

    Article  Google Scholar 

  51. X.F. Zhou, Z.M. Jiang, J.H. Lin, X.D. Tang, Q.M. Chen, H. Zhang, P.X. Zhang, J. Phys. D 42, 225303 (2009)

    Article  ADS  Google Scholar 

  52. X. Liu, Y.Z. Yan, Q.M. Chen, H. Zhang, X.P. Yin, Appl. Phys. A (2013). doi:10.1007/s00339-013-8013-8

    Google Scholar 

  53. J. Ma, H. Zhang, Q.M. Chen, X. Liu, J. Appl. Phys. 114, 043708 (2013)

    Article  ADS  Google Scholar 

  54. D.G. Naugle, A.B. Kaiser, in Thallium-based high-temperature superconductors, ed. by A.M. Hermann, J.V. Yakhmi (Marcel Dekker, New York, 1994), p. 559

    Google Scholar 

  55. H.Y. Zhang, H.S. Huang, B. Tang, L.F. Zhang, Z.S. Zhang, M.L. Liu, Phys. C 282–287, 1275 (1997)

    Article  Google Scholar 

  56. K. Fischer, C. Stoiber, A. Kyarad, H. Lengfellner, Appl. Phys. A 78, 323 (2004)

    Article  ADS  Google Scholar 

  57. Th Zahner, R. Förg, H. Lengfellner, Appl. Phys. Lett. 73, 1364 (1998)

    Article  ADS  Google Scholar 

  58. A. Kyarad, H. Lengfellner, Appl. Phys. Lett. 85, 5613 (2004)

    Article  ADS  Google Scholar 

  59. B. Serio, H. Gualous, J.P. Prenel, Sens. Actuators A 84, 303 (2000)

    Article  Google Scholar 

  60. T.A.S. Srinivas, P.J. Timans, R.J. Butcher, H. Ahmed, Appl. Phys. Lett. 59, 1529 (1991)

    Article  ADS  Google Scholar 

  61. H. Lengfellner, S. Zeuner, W. Prettl, K.F. Renk, Europhys. Lett. 25, 375 (1994)

    Article  ADS  Google Scholar 

  62. H.S. Kwok, J.P. Zheng, Phys. Rev. B 46, 3692 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by China Postdoctoral Science Foundation (Grant No. 20070410218), the Postdoctoral Foundation of University of Science and Technology of China, the National Natural Science Foundation of China (Grant No. 10274026), and the Natural Science Foundation of Yunnan Province of China (Grant No. 1999E0003Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G.-Y. Zhang or P. Singjai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, GY., Zhang, H., Tan, SL. et al. A novel strongly correlated electronic thin-film laser energy/power meter based on anisotropic Seebeck effect. Appl. Phys. A 116, 1033–1039 (2014). https://doi.org/10.1007/s00339-014-8335-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8335-1

Keywords

Navigation