Skip to main content
Log in

Influence of small DC bias field on the electrical behaviour of Sr- and Mg-doped lanthanum gallate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

One of the promising electrolyte materials for solid oxide fuel cells application, Sr- and Mg-doped lanthanum gallate La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM), is synthesized by conventional solid state ceramic route. X-ray Rietveld analysis confirms the formation of main orthorhombic phase at room temperature along with a few minor secondary phases. SEM micrograph reveals the grain and grainboundary morphology of the system. Electrical conductivity of the LSGM sample is measured in the temperature range 573–873 K and in the frequency range 20 Hz–1 MHz at a few small DC bias fields (at 0.0, 0.5, 1.0, 1.5 and 2.0 V). The conductivity spectra show power-law behaviour. Electrical conductivity of the sample is found to be weakly dependent on DC bias field. This is attributed to field-dependent bulk and grainboundary conduction processes. In the present system, under investigated bias field range, the possibility of formation of Schottky barrier is ruled out. The concept of grainboundary channel (pathway) modulation on the application of bias field is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.C.H. Steele, A. Heinzel, Nature 414, 345 (2001)

    ADS  Google Scholar 

  2. E.P. Murray, T. Tsai, S.A. Barnett, Nature 400, 649 (1999)

    ADS  Google Scholar 

  3. E. Ivers-Tiffe′e, A. Weber, D. Herbstritt, J. Eur. Ceram. Soc. 21, 1805 (2001)

    Google Scholar 

  4. B.C.H. Steele, Solid State Ionics 129, 95 (2000)

    Google Scholar 

  5. M. Godickemeir, L.J. Gaukler, J. Electrochem. Soc. 145, 414 (1998)

    Google Scholar 

  6. M. Feng, J.B. Goodenough, Eur. J. Solid State Inorg. Chem. 31, 663 (1994)

    Google Scholar 

  7. T. Ishihara, H. Matsuda, Y. Takita, J. Am. Chem. Soc. 116, 3801 (1994)

    Google Scholar 

  8. A.C. Tas, P.J. Majewski, F. Aldinger, J. Am. Ceram. Soc. 83, 2954 (2000)

    Google Scholar 

  9. A.C. Tas, P.J. Majewski, F. Aldinger, J. Am. Ceram. Soc. 85, 1414 (2002)

    Google Scholar 

  10. T. Ishihara, H. Matsuda, Y. Takita, Solid State Ionics 79, 147 (1995)

    Google Scholar 

  11. M. Li, Y. Zhang, M. An, Z. Lü, X. Huang, J. Xiao, B. Wei, X. Zhu, W. Su, J. Power Sources 2182, 233 (2012)

    Google Scholar 

  12. D. Marrero-Lo′ pez, M.C. Martı′n-Seden˜ o, J. Pen˜ a-Martı′nez, J.C. Ruiz-Morales, P. Nu′ n˜ ez-Coello, J.R. Ramos-Barrado, J. Am. Ceram. Soc. 94, 1031 (2011)

    Google Scholar 

  13. W. Yao, Z. Tang, Z. Zhang, S. Luo, J. Li, Q. Tan, Mater. Sci. Engg. B 99, 309 (2003)

    Google Scholar 

  14. H. Ishikawa, M. Enoki, T. Ishihara, T. Akiyama, Mat. Trans. 47, 149 (2006)

    Google Scholar 

  15. W. Gong, S. Gopalan, U.B. Pal, J. Electrochem. Soc. 152, A1890 (2005)

    Google Scholar 

  16. K. Huang, R.S. Tichy, J.B. Goodenough, J. Am. Ceram. Soc. 81, 2576 (1998)

    Google Scholar 

  17. J. Drennan, V. Zelizko, D. Hay, F.T. Ciacchi, S. Rajendran, S.P.S. Badwal, J. Mater. Chem. 7, 79 (1997)

    Google Scholar 

  18. S. Pathak, D. Steinmetz, J. Kuebler, E.A. Payzant, N. Orlovskaya, Ceram. Int. 35, 1235 (2009)

    Google Scholar 

  19. N.M. Sammes, F.M. Keppeler, H. Naefe, F. Aldinger, J. Am. Ceram. Soc. 81, 3104 (1998)

    Google Scholar 

  20. M. Rozumek, P. Majeswski, T. Maldener, F. Aldinger, Mat. wiss. u. Werkstofftechnik 33, 348 (2002)

    Google Scholar 

  21. N. Masó, M. Prades, H. Beltrán, E. Cordoncillo, D.C. Sinclair, Appl. Phys. Lett. 97, 062907 (2010)

    ADS  Google Scholar 

  22. P.K. Jana, S. Sarkar, B.K. Chaudhuri, H. Sakata, Appl. Phys. Lett. 90, 242913 (2007)

    ADS  Google Scholar 

  23. E. Djurado, M. Labeu, J. Eur. Ceram. Soc. 18, 1397 (1998)

    Google Scholar 

  24. R. Polini, A. Pamio, E. Traversa, J. Eur. Ceram. Soc. 24, 1365 (2004)

    Google Scholar 

  25. P.R. Slater, J.T.S. Irvine, T. Ishihara, Y. Takita, J. Solid State Chem. 139, 135 (1998)

    ADS  Google Scholar 

  26. D.P. Almond, A.R. West, Nature (London) 306, 456 (1983)

    ADS  Google Scholar 

  27. A.K. Jonscher, Nature (London) 267, 673 (1977)

    ADS  Google Scholar 

  28. B. Roling, C. Martiny, S. Murugavel, Phys. Rev. Lett. 87, 85901 (2001)

    ADS  Google Scholar 

  29. D.P. Almond, G.K. Duncan, A.R. West, Solid State Ionics 8, 159 (1983)

    Google Scholar 

  30. J. Flieg, J. Maier, J. Eur. Ceram. Soc. 19, 693 (1999)

    Google Scholar 

  31. B.E. McNealy, J.L. Hertz, Solid State Ionics 256, 52 (2014)

    Google Scholar 

  32. J.-B. Jorcin, M.E. Orazem, N. Pebere, B. Tribollet, Electrochim. Acta 51, 1473 (2006)

    Google Scholar 

  33. J.R. Macdonald, Impedance spectroscopy: emphasizing solid materials and systems (Wiley, New York, 1987)

    Google Scholar 

  34. H. Hayashi, H. Inaba, M. Matsuyama, N.G. Lam, M. Dokiya, H. Tagawa, Solid State Ionics 122, 1 (1999)

    Google Scholar 

  35. P. Majewski, M. Rozumek, A.C. Tas, F. Aldinger, J. Electroceram. 8, 65 (2002)

    Google Scholar 

  36. T. Prakash, S. Ramasamy, B.S. Murty, AIP Adv. 1, 022107 (2011)

    ADS  Google Scholar 

  37. C.T. Chen, K. Choi, S. Kim, Phys. Chem. Chem. Phys. 14, 9047 (2012)

    Google Scholar 

  38. I.-D. Kim, A. Rothschild, H.L. Tuller, Appl. Phys. Lett. 88, 072902 (2006)

    ADS  Google Scholar 

  39. F. Iguchi, C.-T. Chen, H. Yugami, S. Kim, J. Mater. Chem. 21, 16517 (2011)

    Google Scholar 

  40. N.M. Beekmans, L. Heyne, Electrochim. Acta 21, 303 (1976)

    Google Scholar 

  41. J.E. Bauerle, J. Phys. Chem. Solids 30, 2657 (1969)

    ADS  Google Scholar 

  42. J. Maier, J. Phys. Chem. Solids 46, 309 (1985)

    ADS  Google Scholar 

  43. J. Fleig, J. Maier, Phys. Chem. Chem. Phys. 1, 3315 (1999)

    Google Scholar 

  44. X. Guo, Y. Ding, J. Electrochem. Soc. 151, J1 (2004)

    Google Scholar 

  45. X. Guo, S. Mi, R. Waser, Electrochem. Solid State Lett. 8, J1 (2005)

    Google Scholar 

  46. S.U. Sharath, R.K. Singh, Raghvendra, B.P. Singh, P. Kumar, P. Singh, J. Am. Ceram. Soc. 96, 3127 (2013)

    Google Scholar 

Download references

Acknowledgments

We acknowledge DST-SERC for funding this work through its project sanction letter No. SR/FTP/ETA-0005/2010. Mr. Raghvendra is thankful to MHRD for providing Institute Teaching Assistantship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghvendra, Singh, R.K. & Singh, P. Influence of small DC bias field on the electrical behaviour of Sr- and Mg-doped lanthanum gallate. Appl. Phys. A 116, 1793–1800 (2014). https://doi.org/10.1007/s00339-014-8332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8332-4

Keywords

Navigation