Skip to main content
Log in

Spectral and surface investigations of Ca2V2O7:Eu3+ nanophosphors prepared by citrate-gel combustion method: a potential red-emitting phosphor for near-UV light-emitting diodes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, red-emitting Ca2V2O7:xEu3+ (x = 0.5–6.0 mol%) nanophosphors, in the form of powders, were synthesized by the citrate-gel combustion method using metal nitrates as precursors and citric acid as fuel. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy, photoluminescence (PL) and cathodoluminescence (CL) spectroscopy were used to study the structure, morphology and spectral properties of the samples. The chemical compositions and electronic states of the powders were analyzed with X-ray photoelectron spectroscopy. The average crystallite sizes estimated using the XRD data were found to be in the range of 30–45 nm, and were cross verified by TEM. The lattice parameters determined by the POWD program were approximated as a = 7.242 Å, b = 6.674 Å, c = 6.932 Å and V = 291.24 Å3, respectively. Under UV (395 nm) (PL) and electron (CL) excitation, the nanophosphors show characteristic emission from the Eu3+ ion (5D0 → 7Fj, j = 1–5) with the main peaks at 612 and 616 nm. The maximum emission intensity was recorded from the sample with an Eu3+ concentration of 4 mol% and a critical energy distance of 19.084 Å between the donor and the acceptor. Above this concentration, there was a reduction in the intensity due to dipole–dipole induced concentration quenching effects. The potential applications of this phosphor as a high color-purity phosphor in light-emitting diodes are evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.P. Alivisatos, Science 271, 933 (1996)

    Article  ADS  Google Scholar 

  2. T. Justel, H. Nikol, C. Ronda, Angew. Chem. 37, 3084 (1998)

    Article  Google Scholar 

  3. X. Peng, M.C. Schamp, A. Kadavanich, A.P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997)

    Article  Google Scholar 

  4. A. Huignard, T. Gacoin, J.P. Boilot, Chem. Mater. 12, 1090 (2000)

    Article  Google Scholar 

  5. K. Riwotzki, H. Meyssamy, H. Schnablegger, A. Kornowski, M. Haase, Angew. Chem. 40, 573 (2001)

    Article  Google Scholar 

  6. Y. Pan, Q. Su, H. Xu, T. Chen, W. Ge, C. Yang, M. Wu, J. Solid State Chem. 174, 69 (2003)

    Article  ADS  Google Scholar 

  7. V.B. Taxak, Sheetal, Dayawati, S.P. Khatkar, Cur. Appl. Phys 13, 594 (2013)

    Article  ADS  Google Scholar 

  8. Z. Qingli, G. Changxin, S. Chaoshu, L.J. Shaozhe, J. Alloys Compd. 309, 10 (2000)

    Article  Google Scholar 

  9. S. Neeraj, N. Kijima, A.K. Cheetham, Solid State Commun. 131, 65 (2004)

    Article  ADS  Google Scholar 

  10. A. Waśkowska, L. Gerward, J.S. Olsen, M. Mączka, T. Lis, A. Pietraszko, W. Morgenroth, Solid State Chem. 178, 2218 (2005)

    Article  ADS  Google Scholar 

  11. L.D. Merkle, A. Pinto, H. Verdum, Appl. Phys. Lett. 61, 2386 (1992)

    Article  ADS  Google Scholar 

  12. L.L. Noto, S.S. Pitale, O.M. Ntwaeaborwa, J.J. Terblans, H.C. Swart, J. Lumin. 140, 14 (2013)

    Article  Google Scholar 

  13. R.B. Pode, S.J. Dhoble, Phys. Status Solidi(b) 203, 571 (1997)

    Article  ADS  Google Scholar 

  14. Z. Wang, H. Liang, M. Gong, Q. Su, Electrochem. Solid State Lett. 8, H33 (2005)

    Article  Google Scholar 

  15. F.C. Hawthorne, C. Calvo, J. Solid State Chem. 26, 345 (1978)

    Article  ADS  Google Scholar 

  16. U.G. Nielsen, H.J. Jakobsen, J. Skibsted, J. Phys. Chem. B 105, 420 (2001)

    Google Scholar 

  17. I.M. Curelaru, E. Suonien, E. Minni, J. Lumin. 28, 123 (1983)

    Article  Google Scholar 

  18. T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, T. Manabe, Opt. Mater. 32, 1618 (2010)

    Article  ADS  Google Scholar 

  19. M.R. Joung, J.S. Kim, M.E. Song, S. Nahm, J. Am. Ceram. Soc. 92, 3092 (2009)

    Article  Google Scholar 

  20. Q. Zhou, M. Shao, T. Chen, H. Xu, Mater. Res. Bull. 45, 1051 (2010)

    Article  Google Scholar 

  21. M.V. Rotermal, T.I. Krasnenko, R.G. Zakharov, S.A. Petrova, Russ. J. Inorg. Chem. 49, 1753 (2004)

    Google Scholar 

  22. M.R. Joung, J.S. Kim, M.E. Song, S. Nahm, J.H. Paik, B.H. Choi, J. Am. Ceram. Soc. 92, 1621 (2009)

    Article  Google Scholar 

  23. R. Singh, S.J. Dhoble, Adv. Mat. Lett. 2, 341 (2011)

    Google Scholar 

  24. J. Gu, B. Yan, J. Alloys Compd. 476, 619 (2009)

    Article  Google Scholar 

  25. J.R. Oh, S.H. Cho, Y.H. Lee, Y.R. Do, Electrochem. Solid State Lett. 13, J5 (2010)

    Article  Google Scholar 

  26. S.K.K. Shaat, H.C. Swart, O.M. Ntwaeaborwa, Optic. Mater. Express 2, 962–968 (2012)

    Article  Google Scholar 

  27. S.H. Lee, H.Y. Koo, S.M. Lee, Y.C. Kang, Ceram. Inter. 6, 611 (2010)

    Article  Google Scholar 

  28. T. Taguchi, J. Light Vision Environ. 27, 131 (2003)

    Article  ADS  Google Scholar 

  29. J.S. Kim, P.E. Jeon, Y.H. Park, J.C. Choi, H.L. Park, Appl. Phys. Lett. 85, 3696 (2004)

    Article  ADS  Google Scholar 

  30. S. Shionoya, W.M. Yen, Phosphor handbook (CRC Press, Boca Raton, 1999), p. 203

    Google Scholar 

  31. V. Kumar, A.K. Bedyal, S.S. Pitale, O.M. Ntwaeaborwa, H.C. Swart, J. Alloys Compd. 554, 214 (2013)

    Article  Google Scholar 

  32. B.D. Cullity, Element of X-ray diffraction, 2nd edn. (Addison-Wesley, New York, 1956), p. 99

    Google Scholar 

  33. M.Y. Gamarnik, Phys. Status Solidi B 168, 389 (1991)

    Article  ADS  Google Scholar 

  34. J.S. Vermaak, C.W. Mays, D. Kuhlmann, Surf. Sci. 12, 128 (1968)

    Article  ADS  Google Scholar 

  35. K. Lu, M.L. Sui, Scripta Metall. Mater. 28, 1465 (1993)

    Article  Google Scholar 

  36. K. Lu, N.X. Sun, Philos. Mag. Lett. 75, 389 (1997)

    Article  ADS  Google Scholar 

  37. W. Qin, Z.H. Chen, P.Y. Huang, Y.H. Zhuang, J. Alloys Compd. 292, 230 (1999)

    Article  Google Scholar 

  38. X.D. Liu, H.Y. Zhang, K. Lu, Z.Q. Hu, J. Phys. Condens. Matter 6, 497 (1994)

    Article  ADS  Google Scholar 

  39. W.L. Zhu, Y.Q. Maa, C. Zhai, K. Yang, X. Zhang, D.D. Wua, G. Li, G.H. Zheng, Opt. Mater. 33, 1162 (2011)

    Article  ADS  Google Scholar 

  40. X.C. Zhou, L.P. Zhonga, Q.P. Liub, R.Y. Kuanga, H.M. Chen, Inorg. Mater. 45, 1295 (2009)

    Article  Google Scholar 

  41. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Verlag Berlin Heidelberg, 1994), p. 86

  42. http://www.mathworks.com/matlabcentral/fileexchange/29620-ciecoordinate-calculator. Accessed 13 Sep 2013

  43. C. Guo, Y. Xu, X. Ding, M. Li, J. Yu, J. Bai, J. Alloys Compd. 42, L38 (2011)

    Article  Google Scholar 

  44. G. Blasse, Philips Res. Rep. 24, 131 (1969)

    Google Scholar 

  45. X. Zhang, F. Zhou, J. Shi, M. Gong, Mater. Lett. 63, 852 (2009)

    Article  Google Scholar 

  46. D.L. Dexter, J. Chem. Phys. 21, 836 (1953)

    ADS  Google Scholar 

  47. S. Shionoya, W.M. Yen, Phosphor Handbook (CRC Press, Boca Raton, 1999), p. 190

    Google Scholar 

  48. G. Ju, Y. Hu, H. Wu, Z. Yang, C. Fu, Z. Mu, F. Kang, Opt. Mater. 33, 1297 (2011)

    Article  ADS  Google Scholar 

  49. G. Li, Z. Hou, C. Peng, W. Wang, Z. Cheng, C. Li, H. Lian, J. Lin, Adv. Funct. Mater. 20, 3446 (2010)

    Article  Google Scholar 

  50. S.S. Pitale, M. Gohain, I.M. Nagpure, O.M. Ntwaeaborwa, B.C.B. Bezuidenhoudt, H.C. Swart, Phys. B 407, 1485 (2012)

    Article  ADS  Google Scholar 

  51. G. Silversmit, D. Depla, H. Poelman, G.B. Marin, R.D. Gryse, J. Elect, Spectrosc. Relat. Phenom. 135, 167 (2004)

    Article  Google Scholar 

  52. M.C. Biesingera, L.W.M. Laua, A.R. Gerson, R.S.C. Smart, Appl. Surf. Sci. 257, 887 (2010)

    Article  ADS  Google Scholar 

  53. M. Yan, T. Mori, J. Zou, F. Yea, D.R. Ou, J. Drennan, Acta Mater. 57, 722 (2009)

    Article  Google Scholar 

  54. B. Demri, D. Muster, J. Mater. Proc. Tech. 55, 311 (1995)

    Article  Google Scholar 

  55. Y. Inoue, I. Yasumori, Bull. Chem. Soc. Jpn 54, 1505 (1981)

    Article  Google Scholar 

  56. R.G. Krishnan, B.V.R. Chowdari, K.L. Tan, Solid State Ionics 53, 1168 (1992)

    Google Scholar 

  57. K.S. Raju, M.K.P. Seydei, S.A. Suthanthiraraj, Mater. Lett. 19, 65 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

AKB is highly thankful to Inter University Accelerator Centre, New Delhi for financial support in the form of fellowship under UFR project code—MS/30505. VK gratefully thanks the BRNS, Department of Atomic Energy (DAE), Government of India for funding the Project reference no. 2012/34/37/BRNS/1035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, V., Bedyal, A.K., Sharma, J. et al. Spectral and surface investigations of Ca2V2O7:Eu3+ nanophosphors prepared by citrate-gel combustion method: a potential red-emitting phosphor for near-UV light-emitting diodes. Appl. Phys. A 116, 1785–1792 (2014). https://doi.org/10.1007/s00339-014-8331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8331-5

Keywords

Navigation