Abstract
In this paper, precise scribing of thin-film solar cells (CIGS/Mo/Glass) via a picosecond laser is investigated. A parametric study is carried out for P1 and P2 scribing to study the effects of laser fluence and overlap ratio on scribing quality and ablation depth. Three ablation regimes are observed for P1 scribing in different laser fluence ranges, due to the involvement of different ablation mechanisms. The optimum scribing conditions are determined for both P1 and P2 scribing, and the potential processing speed is significantly increased. The heat accumulation effect at different repetition rates is studied to extrapolate the results from low to high repetition rates. A two-temperature model-based model is developed to simulate the scribing process for multiple thin films, providing decent prediction of the slot depth for both P1 and P2 scribing.
Similar content being viewed by others
References
Y. Hamakawa (ed.), Thin-Film Solar Cells: Next Generation Photovoltaics and its Applications (Springer, Berlin Heidelberg, 2004)
R.R. Gay, Status and prospects for CIS-based photovoltaics. Sol. Energy Mater. Sol. Cells 47, 19–26 (1997)
J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, P. Alloncle, Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers. J. Phys. D Appl. Phys. 39, 453–460 (2006)
J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, T. Itina, Selective ablation of thin films with short and ultrashort laser pulses. Appl. Surf. Sci. 252(13), 4814–4818 (2006)
S. Zoppel, H. Huber, G.A. Reider, Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells. Appl. Phys. A 89, 161–163 (2007)
H.P. Huber, F. Herrnberger, S. Kery, S. Zoppel, Selective structuring of thin-film solar cells by ultrafast laser ablation. Proc. SPIE 6881, 688117 (2008)
G. Račiukaitis, P. Gečys, Picosecond-laser structuring of thin films for CIGS solar cells. J. Laser Micro. Nanoeng. 5(1), 10–15 (2010)
T. Kim, H. Pahk, H.K. Park, D.J. Hwang, C.P. Grigoropoulos, Comparison of multilayer laser scribing of thin film solar cells with femto, pico and nanosecond pulse durations. Proc. SPIE 7409, 74090A (2009)
A. Wehrmann, H. Schulte-Huxel, M. Ehrhardt, D. Ruthe, K. Zimmer, A. Braun, S. Ragnow, Change of electrical properties of CIGS thin-film solar cells after structuring with ultrashort laser pulses. Proc. SPIE 7921, 79210T (2011)
P. Gečys, G. Račiukaitis, M. Gedvilas, A. Braun, S. Ragnow, Scribing of thin-film solar cells with picosecond laser pulses. Phys. Procedia 12, 141–148 (2011)
P. Gečys, G. Račiukaitis, A. Wehrmann, K. Zimmer, A. Braun, S. Ragnow, Scribing of thin-film solar cells with picosecond and femtosecond lasers. J. Laser Micro. Nanoeng. 7(1), 33–37 (2012)
A. Burn, V. Romano, M. Muralt, R. Witte, B. Frei, S. Bücheler, S. Nishiwaki, Selective ablation of thin films in latest generation CIGS solar cells with picosecond pulses. Proc. SPIE 8243, 824318 (2012)
S. Lauzurica, J.J. García-Ballesteros, M. Colina, I. Sánchez-Aniorte, C. Molpeceres, Selective ablation with UV lasers of a-Si: H thin film solar cells in direct scribing configuration. Appl. Surf. Sci. 257, 5230–5236 (2011)
W. Hu, Y.C. Shin, G.B. King, Micromachining of metals, alloys, and ceramics by picosecond laser ablation, the ASME. J. Manuf. Sci. Eng. 132, 011009–011015 (2010)
F. Dausinger, H. Hügel, V. Konov, Micro-machining with ultrashort laser pulses: from basic understanding to technical applications. Proc. SPIE 5147, 106–115 (2003)
J. Bovatsek, A. Tamhankar, R. Patel, N.M. Bulgakova, J. Bonse, Effects of pulse duration on the ns-laser pulse induced removal of thin film materials used in photovoltaics. Proc. SPIE 7201, 720116 (2009)
S. Haas, G. Schöpe, C. Zahren, H. Stiebig, Analysis of the laser ablation processes for thin-film silicon solar cells. Appl. Phys. A 92, 755–759 (2008)
Y.P. Meshcheryakov, N.M. Bulgakova, Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation. Appl. Phys. A 82, 363–368 (2006)
W. Hu, Y.C. Shin, G.B. King, Modeling of multi-burst mode pico-second laser ablation for improved material removal rate. Appl. Phys. A 98, 407–415 (2010)
G. Račiukaitis, P. Gečys, M. Gedvilas, K. Regelskis, B. Voisiat, Selective ablation of thin films with picosecond pulsed lasers for solar cells. AIP Conf. Proc. 1278, 800–811 (2010)
D.R. Lide, Handbook of Chemistry and Physics, 74th edn. (CRC Press, FL, 1993)
E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, NY, 1998) (now Elsevier)
S. De Unamuno, E. Fogarassy, A thermal description of the melting of c- and a-silicon under pulsed eximer lasers. Appl. Surf. Sci. 36, 1–11 (1989)
R. An, Y. Li, Y. Dou, Y. Fang, H. Yang, Q. Gong, Laser micro-hole drilling of soda-lime glass with femtosecond pulses. Chin. Phys. Lett. 21, 2465–2468 (2004)
T.Q. Qiu, C.L. Tien, Heat transfer mechanisms during short-pulse laser heating of metals. ASME J. Heat Transf. 115, 835–841 (1993)
B. Wu, Y.C. Shin, A simple model for high fluence ultra-short pulsed laser metal ablation. Appl. Surf. Sci. 247, 4079–4084 (2007)
B. Wu, Y.C. Shin, A simplified predictive model for high-fluence ultra-short pulsed laser ablation of semiconductors and dielectrics. Appl. Surf. Sci. 255, 4996–5002 (2009)
R.M. More, K.H. Warren, D.A. Young, G.B. Zimmerman, A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 3059–3078 (1988)
B. Wu, Y.C. Shin, H. Pakhal, N.M. Laurendeau, R.P. Lucht, Modeling and experimental verification of plasmas induced by high-power nanosecond laser–aluminum interactions in air. Phys. Rev. E 76, 026405 (2007)
X. Zhao, Y.C. Shin, A two-dimensional comprehensive hydrodynamic model for femtosecond laser pulse interaction with metals. J. Phys. D Appl. Phys. 45, 105201 (2012)
F.L. Pedrotti, L.S. Pedrotti, Introduction to Optics (Prentice Hall, Englewood Cliffs, NJ, 1993)
V.L. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Gordon and Breach, New York, 1962)
N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, W. Marine, E.E.B. Campbell, A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion. Appl. Phys. A 81, 345–356 (2005)
D.Y. Lee, M.S. Kim, L. Larina, B.T. Ahn, Effect of Cu content on the photovoltaic properties of Cu(In, Ga)Se2 solar cells prepared by the evaporation of binary selenide sources. Electron. Mater. Lett. 4(1), 13–18 (2008)
S.S. Mao, X. Mao, R. Greif, R.E. Russo, Simulation of infrared picosecond laser-induced electron emission from semiconductors. Appl. Surf. Sci. 127, 206–211 (1998)
H.M. Van Driel, Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses. Phys. Rev. B 35, 8166–8176 (1987)
Z. Tóth, B. Hopp, T. Szörényi, Z. Bor, E.A. Shakhno, V.P. Veiko, Pulsed laser ablation mechanisms of thin metal films. Proc. SPIE 3822, 18–26 (1999)
S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B 14, 2716 (1997)
Acknowledgments
The authors wish to gratefully acknowledge the financial support provided for this study by the National Science Foundation (Grant Nos.: CMMI-1030786, 0853890-CBET).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhao, X., Cao, Y., Nian, Q. et al. Precise selective scribing of thin-film solar cells by a picosecond laser. Appl. Phys. A 116, 671–681 (2014). https://doi.org/10.1007/s00339-014-8330-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00339-014-8330-6