Skip to main content

Advertisement

Log in

Precise selective scribing of thin-film solar cells by a picosecond laser

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, precise scribing of thin-film solar cells (CIGS/Mo/Glass) via a picosecond laser is investigated. A parametric study is carried out for P1 and P2 scribing to study the effects of laser fluence and overlap ratio on scribing quality and ablation depth. Three ablation regimes are observed for P1 scribing in different laser fluence ranges, due to the involvement of different ablation mechanisms. The optimum scribing conditions are determined for both P1 and P2 scribing, and the potential processing speed is significantly increased. The heat accumulation effect at different repetition rates is studied to extrapolate the results from low to high repetition rates. A two-temperature model-based model is developed to simulate the scribing process for multiple thin films, providing decent prediction of the slot depth for both P1 and P2 scribing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Hamakawa (ed.), Thin-Film Solar Cells: Next Generation Photovoltaics and its Applications (Springer, Berlin Heidelberg, 2004)

    Google Scholar 

  2. R.R. Gay, Status and prospects for CIS-based photovoltaics. Sol. Energy Mater. Sol. Cells 47, 19–26 (1997)

    Article  Google Scholar 

  3. J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J.-F. Guillemoles, P. Alloncle, Comparative investigation of solar cell thin film processing using nanosecond and femtosecond lasers. J. Phys. D Appl. Phys. 39, 453–460 (2006)

    Article  ADS  Google Scholar 

  4. J. Hermann, M. Benfarah, G. Coustillier, S. Bruneau, E. Axente, J.-F. Guillemoles, M. Sentis, P. Alloncle, T. Itina, Selective ablation of thin films with short and ultrashort laser pulses. Appl. Surf. Sci. 252(13), 4814–4818 (2006)

    Article  ADS  Google Scholar 

  5. S. Zoppel, H. Huber, G.A. Reider, Selective ablation of thin Mo and TCO films with femtosecond laser pulses for structuring thin film solar cells. Appl. Phys. A 89, 161–163 (2007)

    Article  ADS  Google Scholar 

  6. H.P. Huber, F. Herrnberger, S. Kery, S. Zoppel, Selective structuring of thin-film solar cells by ultrafast laser ablation. Proc. SPIE 6881, 688117 (2008)

    Article  Google Scholar 

  7. G. Račiukaitis, P. Gečys, Picosecond-laser structuring of thin films for CIGS solar cells. J. Laser Micro. Nanoeng. 5(1), 10–15 (2010)

    Article  Google Scholar 

  8. T. Kim, H. Pahk, H.K. Park, D.J. Hwang, C.P. Grigoropoulos, Comparison of multilayer laser scribing of thin film solar cells with femto, pico and nanosecond pulse durations. Proc. SPIE 7409, 74090A (2009)

    Article  Google Scholar 

  9. A. Wehrmann, H. Schulte-Huxel, M. Ehrhardt, D. Ruthe, K. Zimmer, A. Braun, S. Ragnow, Change of electrical properties of CIGS thin-film solar cells after structuring with ultrashort laser pulses. Proc. SPIE 7921, 79210T (2011)

    Article  ADS  Google Scholar 

  10. P. Gečys, G. Račiukaitis, M. Gedvilas, A. Braun, S. Ragnow, Scribing of thin-film solar cells with picosecond laser pulses. Phys. Procedia 12, 141–148 (2011)

    Article  ADS  Google Scholar 

  11. P. Gečys, G. Račiukaitis, A. Wehrmann, K. Zimmer, A. Braun, S. Ragnow, Scribing of thin-film solar cells with picosecond and femtosecond lasers. J. Laser Micro. Nanoeng. 7(1), 33–37 (2012)

    Article  Google Scholar 

  12. A. Burn, V. Romano, M. Muralt, R. Witte, B. Frei, S. Bücheler, S. Nishiwaki, Selective ablation of thin films in latest generation CIGS solar cells with picosecond pulses. Proc. SPIE 8243, 824318 (2012)

    Article  Google Scholar 

  13. S. Lauzurica, J.J. García-Ballesteros, M. Colina, I. Sánchez-Aniorte, C. Molpeceres, Selective ablation with UV lasers of a-Si: H thin film solar cells in direct scribing configuration. Appl. Surf. Sci. 257, 5230–5236 (2011)

    Article  ADS  Google Scholar 

  14. W. Hu, Y.C. Shin, G.B. King, Micromachining of metals, alloys, and ceramics by picosecond laser ablation, the ASME. J. Manuf. Sci. Eng. 132, 011009–011015 (2010)

    Article  Google Scholar 

  15. F. Dausinger, H. Hügel, V. Konov, Micro-machining with ultrashort laser pulses: from basic understanding to technical applications. Proc. SPIE 5147, 106–115 (2003)

    Article  ADS  Google Scholar 

  16. J. Bovatsek, A. Tamhankar, R. Patel, N.M. Bulgakova, J. Bonse, Effects of pulse duration on the ns-laser pulse induced removal of thin film materials used in photovoltaics. Proc. SPIE 7201, 720116 (2009)

    Article  Google Scholar 

  17. S. Haas, G. Schöpe, C. Zahren, H. Stiebig, Analysis of the laser ablation processes for thin-film silicon solar cells. Appl. Phys. A 92, 755–759 (2008)

    Article  ADS  Google Scholar 

  18. Y.P. Meshcheryakov, N.M. Bulgakova, Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation. Appl. Phys. A 82, 363–368 (2006)

    Article  ADS  Google Scholar 

  19. W. Hu, Y.C. Shin, G.B. King, Modeling of multi-burst mode pico-second laser ablation for improved material removal rate. Appl. Phys. A 98, 407–415 (2010)

    Article  ADS  Google Scholar 

  20. G. Račiukaitis, P. Gečys, M. Gedvilas, K. Regelskis, B. Voisiat, Selective ablation of thin films with picosecond pulsed lasers for solar cells. AIP Conf. Proc. 1278, 800–811 (2010)

    Article  ADS  Google Scholar 

  21. D.R. Lide, Handbook of Chemistry and Physics, 74th edn. (CRC Press, FL, 1993)

    Google Scholar 

  22. E.D. Palik (ed.), Handbook of Optical Constants of Solids (Academic Press, NY, 1998) (now Elsevier)

  23. S. De Unamuno, E. Fogarassy, A thermal description of the melting of c- and a-silicon under pulsed eximer lasers. Appl. Surf. Sci. 36, 1–11 (1989)

    Article  ADS  Google Scholar 

  24. R. An, Y. Li, Y. Dou, Y. Fang, H. Yang, Q. Gong, Laser micro-hole drilling of soda-lime glass with femtosecond pulses. Chin. Phys. Lett. 21, 2465–2468 (2004)

    Article  ADS  Google Scholar 

  25. T.Q. Qiu, C.L. Tien, Heat transfer mechanisms during short-pulse laser heating of metals. ASME J. Heat Transf. 115, 835–841 (1993)

    Article  Google Scholar 

  26. B. Wu, Y.C. Shin, A simple model for high fluence ultra-short pulsed laser metal ablation. Appl. Surf. Sci. 247, 4079–4084 (2007)

    Article  ADS  Google Scholar 

  27. B. Wu, Y.C. Shin, A simplified predictive model for high-fluence ultra-short pulsed laser ablation of semiconductors and dielectrics. Appl. Surf. Sci. 255, 4996–5002 (2009)

    Article  ADS  Google Scholar 

  28. R.M. More, K.H. Warren, D.A. Young, G.B. Zimmerman, A new quotidian equation of state (QEOS) for hot dense matter. Phys. Fluids 31, 3059–3078 (1988)

    Article  MATH  ADS  Google Scholar 

  29. B. Wu, Y.C. Shin, H. Pakhal, N.M. Laurendeau, R.P. Lucht, Modeling and experimental verification of plasmas induced by high-power nanosecond laser–aluminum interactions in air. Phys. Rev. E 76, 026405 (2007)

    Article  ADS  Google Scholar 

  30. X. Zhao, Y.C. Shin, A two-dimensional comprehensive hydrodynamic model for femtosecond laser pulse interaction with metals. J. Phys. D Appl. Phys. 45, 105201 (2012)

    Article  ADS  Google Scholar 

  31. F.L. Pedrotti, L.S. Pedrotti, Introduction to Optics (Prentice Hall, Englewood Cliffs, NJ, 1993)

    Google Scholar 

  32. V.L. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Gordon and Breach, New York, 1962)

    Google Scholar 

  33. N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, W. Marine, E.E.B. Campbell, A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion. Appl. Phys. A 81, 345–356 (2005)

    Article  ADS  Google Scholar 

  34. D.Y. Lee, M.S. Kim, L. Larina, B.T. Ahn, Effect of Cu content on the photovoltaic properties of Cu(In, Ga)Se2 solar cells prepared by the evaporation of binary selenide sources. Electron. Mater. Lett. 4(1), 13–18 (2008)

    Google Scholar 

  35. S.S. Mao, X. Mao, R. Greif, R.E. Russo, Simulation of infrared picosecond laser-induced electron emission from semiconductors. Appl. Surf. Sci. 127, 206–211 (1998)

    Article  ADS  Google Scholar 

  36. H.M. Van Driel, Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses. Phys. Rev. B 35, 8166–8176 (1987)

    Article  ADS  Google Scholar 

  37. Z. Tóth, B. Hopp, T. Szörényi, Z. Bor, E.A. Shakhno, V.P. Veiko, Pulsed laser ablation mechanisms of thin metal films. Proc. SPIE 3822, 18–26 (1999)

    Google Scholar 

  38. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B 14, 2716 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to gratefully acknowledge the financial support provided for this study by the National Science Foundation (Grant Nos.: CMMI-1030786, 0853890-CBET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung C. Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Cao, Y., Nian, Q. et al. Precise selective scribing of thin-film solar cells by a picosecond laser. Appl. Phys. A 116, 671–681 (2014). https://doi.org/10.1007/s00339-014-8330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8330-6

Keywords

Navigation