Skip to main content
Log in

Modal analysis of silicon carbide nanotubes using structural mechanics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This article discusses the vibrational properties of silicon carbide nanotubes with various dimensions, chiralities and boundary conditions. The molecular mechanics-based finite element method is applied to study the mode shapes and natural frequencies of the silicon carbide nanotubes. The results reveal that the natural frequencies of the nanotubes increase with decreasing length, but they do not show monotone behaviors vs. diameter changes. The reasons are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Q. Peng, C. Liang, W. Ji, S. De, Mechanical properties of g-GaN: a first principles study. Appl. Phys. A 113, 483–490 (2013)

    Article  ADS  Google Scholar 

  2. P.H. Huang, J.K. Kuo, Thermal stretching of defective nanowires: the coupled effects of vacancy cluster defects, operating temperature, and wire cross-sectional area. Appl. Phys. A 103(4), 1083–1092 (2011)

    Article  ADS  Google Scholar 

  3. G. Ressel, D. Holec, A. Fian, F. Mendez-Martin, H. Leitner, Atomistic insights into milling mechanisms in an Fe–Y2O3 model alloy. Appl. Phys. A (2013). doi:10.1007/s00339-013-7877-y

  4. K.M. Al-Tarawneh, N. Al-Aqtash, Boron-and nitrogen-doped carbon nanotubes with surface defects: an ab initio study. J. Comput. Theor. Nanosci. 10(6), 1446–1452 (2013)

    Article  Google Scholar 

  5. L.H. Qu, J.M. Zhang, K.W. Xu, V. Ji, Structural and electronic properties of armchair graphene nanoribbons under uniaxial strain. Phys. E 56, 55–58 (2014)

    Article  Google Scholar 

  6. J. K. Kuo, P. H. Huang, W. T. Wu, C. M. Lu, Mechanical and fracture behaviors of defective silicon nanowires: combined effects of vacancy clusters, temperature, wire size, and shape. Appl. Phys. A (2013). doi:10.1007/s00339-013-7886-x

  7. A. Ghorbanpour Arani, R. Rahmaniand, A. Arefmanesh, Elastic buckling analysis of single-walled carbon nanotube under combined loading by using the ANSYS software. Phys. E: Low Dimens. Syst. Nanostruct. 40(7), 2390–2395 (2008)

    Article  ADS  Google Scholar 

  8. M.M.S. Fakhrabadi, B. Dadashzadeh, V. Norouzifard, A. Allahverdizadeh, Application of molecular dynamics in mechanical characterization of carbon nanocones. J. Comput. Theor. Nanosci. 10(9), 1921–1927 (2013)

    Article  Google Scholar 

  9. M. M. S. Fakhrabadi, P. K. Khorasani, A. Rastgoo, M. T. Ahmadian, Molecular dynamics simulation of pull-in phenomena in carbon nanotubes with stone-wales defects. Solid State Commun. 157, 38–44 (2013)

    Google Scholar 

  10. J. Wereszczynski, J.A. McCammon, Statistical mechanics and molecular dynamics in evaluating thermodynamic properties of biomolecular recognition. Q. Rev. Biophys. 45(01), 1–25 (2012)

    Article  Google Scholar 

  11. F. Fogolari, A. Corazza, N. Varini, M. Rotter, D. Gumral, L. Codutti, E. Rennella, P. Viglino, V. Bellotti, G. Esposito, Molecular dynamics simulation of β2-microglobulin in denaturing and stabilizing conditions. Proteins: Struct. Funct. Bioinf. 79(3), 986–1001 (2011)

    Article  Google Scholar 

  12. M.M.S. Fakhrabadi, A. Amini, F. Reshadi, N. Khani, A. Rastgoo, Investigation of buckling and vibration properties of hetero-junctioned and coiled carbon nanotubes. Comput. Mater. Sci. 73, 93–112 (2013)

    Article  Google Scholar 

  13. T. Murmu, M. A. McCarthy, S. Adhikari, In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach. Compos. Struct. (2012)

  14. A.G. Arani, R. Rahmani, A. Arefmanesh, S. Golabi, Buckling analysis of multi-walled carbon nanotubes under combined loading considering the effect of small length scale. J. Mech. Sci. Technol. 22(3), 429–439 (2008)

    Article  Google Scholar 

  15. R. Ansari, A. Shahabodini, H. Rouhi, A thickness-independent nonlocal shell model for describing the stability behavior of carbon nanotubes under compression. Compos. Struct. 100, 323–331 (2013)

    Article  Google Scholar 

  16. T. Natsuki, N. Matsuyama, J. X. Shi, Q. Q. Ni, Vibration analysis of nanomechanical mass sensor using carbon nanotubes under axial tensile loads. Appl. Phys. A (2014). doi:10.1007/s00339-014-8289-3

  17. C. Hwu, Y. K. Yeh, Explicit expressions of mechanical properties for graphene sheets and carbon nanotubes via a molecular-continuum model. Appl. Phys. A (2014). doi:10.1007/s00339-014-8241-6

  18. R. Ansari, S. Sahmani, B. Arash, Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys. Lett. A 375(1), 53–62 (2010)

    Article  ADS  Google Scholar 

  19. M.M.S. Fakhrabadi, A. Rastgoo, M.T. Ahmadian, Dynamic behaviours of carbon nanotubes under dc voltage based on strain gradient theory. J. Phys. D Appl. Phys. 46(40), 405101 (2013)

    Article  Google Scholar 

  20. M.M.S. Fakhrabadi, A. Amini, A. Rastgoo, Vibrational properties of two and three junctioned carbon nanotubes. Comput. Mater. Sci. 65, 411–425 (2012)

    Article  Google Scholar 

  21. M.M.S. Fakhrabadi, A. Allahverdizadeh, V. Norouzifard, B. Dadashzadeh, Mechanical characterization of deformed carbon nanotubes. Digest J. Nanomater. Biostruct. 7(2), 717–727 (2012)

    Google Scholar 

  22. J. Zhang, C. Wang, S. Adhikari, Molecular structure-dependent deformations in boron nitride nanostructures subject to an electrical field. J. Phys. D Appl. Phys. 46(23), 235303 (2013)

    Article  ADS  Google Scholar 

  23. R. Chowdhury, F. Scarpa, S. Adhikari, Molecular-scale bio-sensing using armchair graphene. J. Appl. Phys. 12(1), 014905 (2012)

    Article  ADS  Google Scholar 

  24. M.M.S. Fakhrabadi, N. Khani, S. Pedrammehr, Vibrational analysis of single-walled carbon nanocones using molecular mechanics approach. Phys. E 44(7), 1162–1168 (2012)

    Article  Google Scholar 

  25. M.M.S. Fakhrabadi, N. Khani, R. Omidvar, A. Rastgoo, Investigation of elastic and buckling properties of carbon nanocones using molecular mechanics approach. Comput. Mater. Sci. 61, 248–256 (2012)

    Article  Google Scholar 

  26. M.M.S. Fakhrabadi, M. Samadzadeh, A. Rastgoo, M.H. Yazdi, M.M. Mashhadi, Vibrational analysis of carbon nanotubes using molecular mechanics and artificial neural network. Phys. E 44(3), 565–578 (2011)

    Article  Google Scholar 

  27. L. Boldrin, F. Scarpa, R. Chowdhury, S. Adhikari, Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22(50), 505702 (2011)

    Article  Google Scholar 

  28. R. Chowdhury, S. Adhikari, F. Scarpa, Elasticity and piezoelectricity of zinc oxide nanostructure. Phys. E 42(8), 2036–2040 (2010)

    Article  Google Scholar 

  29. R. Ansari, S. Rouhi, M. Aryayi, M. Mirnezhad, On the buckling behavior of single-walled silicon carbide nanotubes. Sci. Iranica 19(6), 1984–1990 (2012)

    Article  Google Scholar 

  30. R. Ansari, S. Rouhi, M. Mirnezhad, M. Aryayi, Stability characteristics of single-layered silicon carbide nanosheets under uniaxial compression. Phys. E 53, 22–28 (2013)

    Article  Google Scholar 

  31. W. H. Moon, J. K. Ham, H. J. Hwang, Mechanical properties of SiC nanotubes. In Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show, vol. 3 (2003), pp 158–161

  32. N. Silvestre, Generalised beam theory to analyse the buckling behaviour of circular cylindrical shells and tubes. Thin-Walled Struct. 45(2), 185–198 (2007)

    Article  MathSciNet  Google Scholar 

  33. E. Riks, C.C. Rankin, F.A. Brogan, On the solution of mode jumping phenomena in thin-walled shell structures. Comput. Methods Appl. Mech. Eng. 136(1), 59–92 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Masoud Seyyed Fakhrabadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khani, N., Seyyed Fakhrabadi, M.M., Vahabi, M. et al. Modal analysis of silicon carbide nanotubes using structural mechanics. Appl. Phys. A 116, 1687–1694 (2014). https://doi.org/10.1007/s00339-014-8325-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8325-3

Keywords

Navigation