Skip to main content
Log in

Silicon before the bonds break

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The diamond structure of silicon can be destroyed by a femtosecond-laser pulse in a process that is called nonthermal melting. Using a supercell of 800 atoms, we have performed ab initio molecular dynamics simulations on laser-excited potential energy surfaces for electronic excitation densities around the threshold for nonthermal melting. By introducing a quantitative measure for the resemblance of the atomic paths below and above this threshold, we show that the directions of the atomic motions are the same within 98% during 150–200 fs. The atomic pathways below the melting threshold, before the bonds break, are therefore quantitatively closely related to the atomic motions during the first stages of nonthermal melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cavalleri, A., Tóth, C.S., Siders C.W., Squier J.A., Ráksi F., Forget P., Kieffer J.C.: Phys. Rev. Lett. 87, 237401 (2001)

    Article  ADS  Google Scholar 

  2. Photoinduced Phase Transitions, ed. by K. Nasu. (World Scientific, New Jersey, 2004)

  3. Wall, S., Wegkamp, D., Foglia, L., Appavoo, K., Nag, J., Haglund, Jr R.F., Stähler, J., Wolf, M. Nat. Commun 3, 721 (2012)

    Article  ADS  Google Scholar 

  4. Sokolowski-Tinten, K., Bialkowski, J., von der Linde, D. Phys. Rev. B51, 14186 (1998)

    Article  ADS  Google Scholar 

  5. Sokolowski-Tinten, K., Blome, C., Dietrich, C., Tarasevitch, A., Horn von Hoegen, M., von der Linde, D., Cavalleri, A., Squier, J., Kammler, M. Phys. Rev. Lett 87, 225701 (2001)

    Article  ADS  Google Scholar 

  6. Harb, M., Ernstorfer, R., Hebeisen, C.T., Sciaini, G., Peng, W., Dartigalongue, T., Eriksson, M.A., Lagally, M.G., Kruglik, S.G., Miller, R.J.D. Phys. Rev. Lett. 100, 155504 (2008)

    Article  ADS  Google Scholar 

  7. Johnson, S.L., Beaud, P., Vorobeva, E., Milne, C.J., Murray, É.D., Fahy, S., Ingold, G. Phys. Rev. Lett. 102, 175503 (2009)

    Article  ADS  Google Scholar 

  8. Zijlstra, E.S., Kalitsov, A., Zier, T., Garcia, M.E. Phys. Rev. X3, 011005 (2013)

    Google Scholar 

  9. Saeta, P., Wang, J.-K., Siegel, Y., Bloembergen, N., Mazur, E. Phys. Rev. Lett. 67, 1023 (1991)

    Article  ADS  Google Scholar 

  10. Dumitrica, T., Allen, R.E. Phys. Rev. B, 66, 081202 (2002)

    Article  ADS  Google Scholar 

  11. Sciaini, G., Harb, M., Kruglik, S.G., Payer, T., Hebeisen, C.T., Meyer zu Heringsdorf, F.-J., Yamaguchi, M., Horn-von Hoegen, M., Ernstdorfer, R., Miller, R.J.D. Nature(London) 56, 458 (2009)

    Google Scholar 

  12. Dumitrica, T., Burzo, A., Dou, Y., Allen, R.E. Phys. Status Solidi 241, 1438 (2004)

    Article  Google Scholar 

  13. Tom, H.W.K., Aumiller, G.D., Brito-Cruz, C.H. Phys. Rev. Lett. 60, 1438 (1988)

    Article  ADS  Google Scholar 

  14. Shank, C.V., Yen, R., Hirlimann, C. Phys. Rev. Lett. 50, 454 (1983)

    Article  ADS  Google Scholar 

  15. Zijlstra, E.S., Kalitsov, A., Zier, T., Garcia, M.E. Adv. Mater. 25, 5605 (2013)

    Article  Google Scholar 

  16. Zijlstra, E.S., Huntemann, N., Kalitsov, A., Garcia, M.E., von Barth, U. Model. Simul. Mater. Sci. Eng. 17, 015009 (2009)

    Article  ADS  Google Scholar 

  17. Silvestrelli, P.L., Alavi, A., Parrinello, M., Frenkel, D. Phys. Rev. Lett. 77, 3149 (1996)

    Article  ADS  Google Scholar 

  18. Silvestrelli, P.L., Alavi, A., Parrinello, M., Frenkel, D. Phys. Rev. B 56, 3806 (1997)

    Article  ADS  Google Scholar 

  19. http://www.random.org

  20. Zijlstra, E.S., Zier, T., Bauerhenne, B., Krylow, S., Geiger, P.M., Garcia, M.E. Appl. Phys. A, 114, 1–9 (2014)

    Google Scholar 

  21. Gamaly, E.G. Appl. Phys. A 101, 205 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank DFG (Project No. GA 465/15-1) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin E. Garcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zier, T., Zijlstra, E.S. & Garcia, M.E. Silicon before the bonds break. Appl. Phys. A 117, 1–5 (2014). https://doi.org/10.1007/s00339-014-8316-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8316-4

Keywords

Navigation