Skip to main content
Log in

Structural, optical and transport properties of 4-hydroxy coumarin: an organic Schottky diode

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present paper, 4-hydroxy coumarin compound was synthesized. The crystallographic phase of this molecule was carried out by X-ray diffraction and confirms its monoclinic structure. Associated functional groups were predicted by Fourier transform infrared spectroscopy. To see its potential utility, a Schottky diode of this material was fabricated. The current–voltage (I–V) and optical characteristics of this Schottky diode were also investigated. Various well-established methods related with the device were used to get information about various diode parameters. From its optical measurement, this compound shows an indirect allowed transition. From optical data analysis, a band gap (E g) of around 3.78 eV was shown by this compound. The observed features exhibited by this molecule give a vital chance to explore its application for various optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.K. Seung (2011) Organic Light Emitting Diode—Material, Process and Devices Published by InTech. Croatia

  2. H.S. Nalwa (ed.), Handbook of organic conductive molecules and polymers (Wiley, New York, 1997)

    Google Scholar 

  3. N. Tugluoglu, B. Baris, H. Gurel, S. Karadeniz, O.F. Yuksel, J. Alloy Compd. 582, 696 (2014)

    Article  Google Scholar 

  4. M.E. Aydin, A. Turut, Microelectron Eng. 84(12), 2875 (2007)

    Article  Google Scholar 

  5. O. Gullu, A. Turut, S. Asubay, J. Phys. Condens. Matter 20, 045215 (2008)

    Article  ADS  Google Scholar 

  6. N. Tugluoglu, O.F. Yuksel, S. Karadeniz, H. Safak, Mater. Sci. Semicond. Process 16, 786 (2013)

    Article  Google Scholar 

  7. S. Karadeniz, B. Baris, O.F. Yuksel, N. Tugluoglu, Synth. Met. 168, 16 (2013)

    Article  Google Scholar 

  8. S.A. Moiz, M.M. Ahmed, K.S. Karimov, ETRI J. 27(3), 319 (2005)

    Article  Google Scholar 

  9. O. Gullu, M. Cankaya, M. Biber, A. Turut, J. Phys. Condens. Matter 20, 215210 (2008)

    Article  ADS  Google Scholar 

  10. O. Gullu, O. Baris, M. Biber, A. Turut, Appl. Surf. Sci. 254, 3039 (2008)

    ADS  Google Scholar 

  11. S. Aydogan, M. Saglam, A. Turut, Vacuum 77, 269 (2005)

    Article  Google Scholar 

  12. I.E. Vermeir, N.Y. Kim, P.E. Laibinis, Appl. Phys. Lett. 74, 3860 (1999)

    Article  ADS  Google Scholar 

  13. I. Musa, W. Eccleston, Thin Solid Films 469, 343 (1999)

    Google Scholar 

  14. M. Cakar, C. Temirci, A. Turut, Synth. Met. 142, 177 (2004)

    Article  Google Scholar 

  15. A.R.V. Roberts, D.A. Evans, Appl. Phys. Lett. 86, 072105 (2005)

    Article  ADS  Google Scholar 

  16. M. Walshe, J. Howarth, M.T. Kelly, R.O. Kennedy, M.R. Smyth, J. Pharm. Biomed. Anal. 16, 319 (1997)

    Article  Google Scholar 

  17. K.C. Fylaktakidou, D.J. Hadjipavlou-Litina, K.E. Litinas, D.N. Nicolaides, Pharm. Design 10, 3813 (2004)

    Google Scholar 

  18. S. Sardari, Y. Mori, K. Horita, R.G. Micetich, S. Nishibe, M. Daneshtalab, Bioorg. Med. Chem. 7, 1933 (1999)

    Article  Google Scholar 

  19. D. Ray, P.K. Bharadwaj, Inorg. Chem. 47, 2252 (2008)

    Google Scholar 

  20. S.R. Trenor, A.R. Shultz, B.J. Love, T.E. Long, Chem. Rev. 104, 3059 (2004)

    Google Scholar 

  21. T.T. Hung, Y.J. Lu, W.Y. Liao, C.L. Huang, Mag. IEEE Trans. 43, 867 (2007)

    ADS  Google Scholar 

  22. K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, H. Arakawa, Chem. Commun. 37, 569 (2001)

    Google Scholar 

  23. H. Zhang, T.Z. Yu, Y.L. Zhao, D.W. Fan, L. Qian, C. Yang, K. Zhang, Spectrochim. Acta Part A 68, 725 (2007)

    ADS  Google Scholar 

  24. H. Ammar, S. Fery-Forgues, R.E. Gharbi, Dyes Pigm. 57, 259 (2003)

    Google Scholar 

  25. J. Preat, D. Jacquemin, E.A. Perpete, Chem. Phys. Lett. 415, 20–24 (2005)

    ADS  Google Scholar 

  26. C. Tablet, A. Jelea, M. Hillebrand, J. Photochem Photobiol. A Chem. 183, 89 (2006)

    Google Scholar 

  27. W.J. Yang, D.Y. Kim, M.Y. Jeong, H.M. Kim, Y.K. Lee, X.Z. Fang, S.J. Jeon, B.R. Cho, J. Eur. Chem. 11, 4191–4198 (2005)

    Google Scholar 

  28. F. Yang, X.L. Zhang, K. Sun, M.J. Xiong, P.F. Xia, Z.J. Cao, Z.H. Li, Synth. Metals 158, 988 (2008)

    Google Scholar 

  29. J.A. Banday, F.A. Mir, S. Farooq, M.A. Qurishi, S. Koul, T.K. Razdan, Am. J. Anal. Chem. 3, 204 (2012)

    Google Scholar 

  30. J.A. Banday, F.A. Mir, M.A. Qurishi, S. Koul, T.K. Razdan, J. Therm. Anal. Calorim. 112, 1165 (2013)

    Google Scholar 

  31. J.A. Banday, F.A. Mir, H.A. Kanth, G.M. Bhat, Optik 124, 4655 (2013)

    ADS  Google Scholar 

  32. J.A. Banday, G.M. Bhat, F.A. Mir, M.A. Qurishi, S. Koul, T.K. Razdan, J. Electron. Mater. 42(8), 2498 (2013)

    ADS  Google Scholar 

  33. S.M. Buchh, F.A. Mir, S. Rehman, M.A. Mushtaq, J.A. Banday, Eur. Phys. J. Appl. Phys. 62(03), 31201 (2013)

    ADS  Google Scholar 

  34. F.A. Mir, G.M. Bhat, K. Asokan, J.A. Banday, J. Mater. Sci. Mat. Elec. 25, 431 (2014)

    Google Scholar 

  35. S.-J. Park, J.-C. Lee, K.-I. Lee, Bull. Korean Chem. Soc. 28(7), 1203 (2007)

    Google Scholar 

  36. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    ADS  Google Scholar 

  37. A. Patterson, Phys. Rev. 56, 978 (1939)

    ADS  MATH  Google Scholar 

  38. N.P.G. Roeges, A guide to the complete interpretation of infrared spectra of organic structures (Wiley, New York, 1994)

    Google Scholar 

  39. G. Varsanyi, Assignments for vibrational spectra of seven hundred benzene derivatives (Adam Hilger, London, 1974)

    Google Scholar 

  40. Y.R. Sharma, O.P. Vig, Elementary organic spectroscopy, 3rd edn. (S. Chand and Company Ltd., New Delhi, 1999)

    Google Scholar 

  41. E.H. Rhoderick, R.H. Williams, Metal-semiconductor contacts, 2nd edn. (Claredon, Oxford, 1988)

    Google Scholar 

  42. F. Yakuphanoglu, Phys. B 388, 226 (2007)

    ADS  Google Scholar 

  43. O. Gullu, S. Aydogan, A. Turut, Solid State Commun. 152, 381 (2012)

    ADS  Google Scholar 

  44. W. Monch, J. Vac. Sci. Technol. B 17, 1867 (1999)

    Google Scholar 

  45. R.T. Tung, Phys. Rev. B 45, 13509 (1992)

    ADS  Google Scholar 

  46. D.R.T. Zahn, T.U. Kampen, H. Mendez, Appl. Surf. Sci. 212, 423 (2003)

    ADS  Google Scholar 

  47. A.A. Kumar, V.R. Reddy, V. Janardhanam, M.W. Seo, H.B. Hong, K.S. Shin, C.-J. Choi, J. Electrochem. Soc. 159, H33 (2012)

    Google Scholar 

  48. T. Kilicoglu, Thin Solid Films 516, 967 (2008)

    ADS  Google Scholar 

  49. H. Mahr, Phys. Rev. 125, 1510 (1962)

    ADS  Google Scholar 

  50. S.S. Lin, J.G. Lu, Z.Z. Ye, H.P. He, X.Q. Gu, L.X. Chen, J.Y. Huang, B.H. Zhao, Solid State Commun. 148, 25 (2008)

    ADS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Director IUAC New Delhi (India) for experimental facilities. Director SKIMS (Prof. S. A. Zargar) for his kind support. One of author (FAM) would like to thank DST (India) for Fast Track Young Scientist project (SR/FTP/PS-148/2012) to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feroz A. Mir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mir, F.A., u Rehman, S., Mir, T.A. et al. Structural, optical and transport properties of 4-hydroxy coumarin: an organic Schottky diode. Appl. Phys. A 116, 1017–1023 (2014). https://doi.org/10.1007/s00339-014-8307-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8307-5

Keywords

Navigation