Skip to main content
Log in

Perpendicular magnetic anisotropy in FePt/AlN layered structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

FePt/AlN layered structures were deposited onto fused quartz substrate by magnetron sputtering method and found to show in-plane anisotropy. However, annealing of the films leads to a transition of magnetic anisotropy from in-plane to perpendicular direction, and the perpendicular anisotropy gets stronger as the annealing temperature increases. Structural analysis shows that the FePt and AlN layers are textured with (111) and (002) orientations, respectively, along the film normal, and no ordering transformation is found for FePt alloy. To study the origin of the developed anisotropy, stress condition was analyzed with an equal biaxial stress model using X-ray diffraction 2θω scan method and interface quality was evaluated by X-ray reflectivity measurement and transmission electron microscopy observation. The results reveal that perpendicular magnetic anisotropy of the annealed FePt/AlN layered structure can be attributed to the enhanced interface anisotropy, which is due to flattening of the interfaces through annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.P.J. Groenland, C.J.M. Egkel, J.H.J. Flultman, R.M. deRidder, Sens. Actuators A 30, 89 (1992)

    Article  Google Scholar 

  2. D.J. Monsma, J.C. Lodder, ThJA Popma, B. Dieny, Phys. Rev. Lett. 74, 5260 (1995)

    Article  ADS  Google Scholar 

  3. P.F. Carcia, A.D. Meinhaldt, A. Suna, Appl. Phys. Lett. 47, 178 (1985)

    Article  ADS  Google Scholar 

  4. P.F. Carcia, J. Appl. Phys. 63, 5066 (1988)

    Article  ADS  Google Scholar 

  5. L. Néel, J. Phys. Radium 15, 225 (1954)

    Article  MATH  Google Scholar 

  6. M. Sakurai, T. Takahata, I. Moritani, J. Magn. Soc. Japan 15, 411 (1991)

    Article  Google Scholar 

  7. F.J.A. den Broeder, D. Kuiper, A.P. van de Mosselaer, W. Hoving, Phys. Rev. Lett. 60, 2769 (1988)

    Article  ADS  Google Scholar 

  8. G. Gubbiotti, G. Carlotti, F. Albertini, F. Casoli, E. Botempi, L.E. Depero, H. Koo, R.D. Gomez, Thin Solid Films 428, 102 (2003)

    Article  ADS  Google Scholar 

  9. C. Chappert, P. Bruno, J. Appl. Phys. 64, 5736 (1988)

    Article  ADS  Google Scholar 

  10. C.H. Lee, H. He, F.J. Lamelas, W. Vavra, C. Uher, R. Clarke, Phys. Rev. B 42, 1066 (1990)

    Article  ADS  Google Scholar 

  11. J.H. van der Merwe, J. Appl. Phys. 34, 123 (1963)

    Article  ADS  Google Scholar 

  12. Y. Hodumi, J. Shi, Y. Nakamura, Appl. Phys. Lett. 90, 212506 (2007)

    Article  ADS  Google Scholar 

  13. C. Feng, Q. Zhan, B.H. Li, J. Teng, M.H. Li, Y. Jiang, G.H. Yu, Appl. Phys. Lett. 93, 152513 (2008)

    Article  ADS  Google Scholar 

  14. C. Feng, X.J. Li, M.Y. Yang, K. Gong, Y.M. Zhu, Q. Zhan, L. Sun, B.H. Li, Y. Jiang, G.H. Yu, Appl. Phys. Lett. 102, 022411 (2013)

    Article  ADS  Google Scholar 

  15. J. Bai, Z. Yang, F. Wei, M. Matsumoto, A. Morisako, J. Magn. Magn. Mater. 257, 132 (2003)

    Article  ADS  Google Scholar 

  16. M.L. Yan, H. Zeng, N. Powers, D.J. Sellmyer, J. Appl. Phys. 91, 8471 (2002)

    Article  ADS  Google Scholar 

  17. M. Daniil, P.A. Farber, H. Okumura, G.C. Hadjipanayis, D. Weller, J. Magn. Magn. Mater. 246, 297 (2002)

    Article  ADS  Google Scholar 

  18. M.A. Korhonen, C.A. Paszkiet, Scr. Met. 23, 1449 (1989)

    Article  Google Scholar 

  19. H.U. Baron, V.Z. Hauk, Z. Metallkde 79, 127 (1988)

    Google Scholar 

  20. J.S. Kim, Y.M. Koo, B.J. Lee, J. Appl. Phys. 99, 053906 (2006)

    Article  ADS  Google Scholar 

  21. J.R. Jeong, S.C. Shin, Phys. Status Solidi B 241, 1706 (2004)

    Article  ADS  Google Scholar 

  22. J.R. Jeong, S.C. Shin, J. Appl. Phys. 87, 6851 (2000)

    Article  ADS  Google Scholar 

  23. X. Li, Z.H. Li, X. Liu, Y.B. Li, J.M. Bai, F.L. Wei, D. Wei, IEEE Trans. Magn. 46, 2024 (2010)

    Article  ADS  Google Scholar 

  24. M.T. Johnson, P.J.H. Bloemen, F.J.A. den Broeder, J.J. de Vries, Rep. Prog. Phys. 59, 1409 (1996)

    Article  ADS  Google Scholar 

  25. M. Pardavi-Horváth, L.I. Vinokurova, VYu. Ivanov, J. Magn. Magn. Mater. 41, 349 (1984)

    Article  ADS  Google Scholar 

  26. M. Vásquez Mansilla, J. Gómez, E. Sallica Leva, F. Castillo Gamarra, A. Asenjo Barahona, A. Butera, J. Magn. Magn. Mater. 321, 2941 (2009)

    Article  ADS  Google Scholar 

  27. H.J.G. Draaisma, F.J.A. den Broeder, W.J.M. de Jonge, J. Magn. Magn. Mater. 66, 351 (1987)

    Article  ADS  Google Scholar 

  28. H.M. van Noort, F.J.A. den Broeder, H.J.G. Draaisma, J. Magn. Magn. Mater. 51, 273 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Sannomiya, T., Muraishi, S. et al. Perpendicular magnetic anisotropy in FePt/AlN layered structure. Appl. Phys. A 116, 1695–1700 (2014). https://doi.org/10.1007/s00339-014-8302-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8302-x

Keywords

Navigation