Skip to main content

Advertisement

Log in

The effect of energy density on yield of silicon nanoparticles prepared by pulsed laser ablation in liquid

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of energy density on the yield of silicon nanoparticles was studied. Silicon nanoparticles were prepared by laser ablation in ethanol. The yield of nanoparticles was calculated and its results indicate that high energy density led to more nanoparticles production. Particle size was also affected by varying energy density. From TEM images, higher energy density resulted in smaller nanoparticles, which can be explained by nucleation and growth theory. Photoluminescence spectra revealed blue shift of emission peak at high energy density supporting TEM results. Silicon peak was detected by EDS analysis along with oxygen. This means oxidation of silicon might occur within the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Kang, Y. Liu, S.-T. Lee, Nanoscale 3, 777 (2011)

    Article  ADS  Google Scholar 

  2. N. Shirahata, D. Hirakawa, Y. Sakka, Green Chem 12, 2139 (2010)

    Article  Google Scholar 

  3. W.L. Liong, S. Sreekantan, S.D. Hutagalung, Proc SPIE 7743, 774306 (2010)

    Article  Google Scholar 

  4. V. Svrcek, D. Mariotti, R. Hailstone, H. Fujiwara, M. Kondo, Mater Res Soc Symp Proc 1066, (2008). doi:10.1557/PROC-1066-A18-10

  5. V. Švrček, Nano-Micro Lett 1, 40 (2010)

    Google Scholar 

  6. V. Maurice, O. Sublemontier, N. Herlin-boime, E. Doris, O. Raccurt, AIP Conf Proc 1275, 44 (2010)

    Article  ADS  Google Scholar 

  7. R.E. Bailey, A.M. Smith, S. Nie, Physica E 25, 1 (2004)

    Article  ADS  Google Scholar 

  8. M. Rosso-Vasic, E. Spruijt, Z. Popović, K. Overgaag, B. van Lagen, B. Grandidier, D. Vanmaekelbergh, D. Domínguez-Gutiérrez, L. De Cola, H. Zuilhof, J Mater Chem 19, 5926 (2009)

    Article  Google Scholar 

  9. P. Sharma, S. Brown, G. Walter, S. Santra, B. Moudgil, Adv Colloid Interf 123–126, 471 (2006)

    Article  Google Scholar 

  10. M.L. Brongersma, A. Polman, K.S. Min, E. Boer, T. Tambo, H.A. Atwater, Appl Phys Lett 72, 2577 (1998)

    Article  ADS  Google Scholar 

  11. F. Erogbogbo, K. Yong, I. Roy, G. Xu, P.N. Prasad, M.T. Swihart, ACS Nano 2, 873 (2008)

    Article  Google Scholar 

  12. F. Erogbogbo, K.-T. Yong, I. Roy, R. Hu, W.-C. Law, W. Zhao, H. Ding, F. Wu, R. Kumar, M.T. Swihart, P.N. Prasad, ACS Nano 5, 413 (2011)

    Article  Google Scholar 

  13. J.H. Warner, A. Hoshino, K. Yamamoto, R.D. Tilley, Angew Chem-Ger Edit 44, 4550 (2005)

    Article  Google Scholar 

  14. F. De Angelis, A. Pujia, C. Falcone, E. Iaccino, C. Palmieri, C. Liberale, F. Mecarini, P. Candeloro, L. Luberto, A. de Laurentiis, G. Das, G. Scala, E. Di Fabrizio, Nanoscale 2, 2230 (2010)

    Article  ADS  Google Scholar 

  15. M.C. Beard, K.P. Knutsen, P. Yu, J.M. Luther, Q. Song, W.K. Metzger, R.J. Ellingson, A.J. Nozik, Nano Lett 7, 2506 (2007)

    Article  ADS  Google Scholar 

  16. A.J. Nozik, Chem Phys Lett 457, 3 (2008)

    Article  ADS  Google Scholar 

  17. Y. Kawashima, K. Nakaharu, H. Sato, G. Uchida, K. Koga, M. Shiratani, M. Kondo, Trans Mater Res Soc Jpn 35, 597 (2010)

    Article  Google Scholar 

  18. G. Uchida, Y. Kawashima, K. Yamamoto, M. Sato, K. Nakahara, T. Matsunaga, D. Yamashita, H. Matsuzaki, K. Kamataki, N. Itagaki, K. Koga, M. Kondo, M. Shiratani, Phys Status Solidi C 8, 3021 (2011)

    Article  ADS  Google Scholar 

  19. H. Seo, Y. Wang, G. Uchida, K. Kamataki, N. Itagaki, K. Koga, M. Shiratani, Electrochim Acta 95, 43 (2013)

    Article  Google Scholar 

  20. X. Li, Y. He, M.T. Swihart, Langmuir 20, 4720 (2004)

    Article  Google Scholar 

  21. S. Botti, R. Coppola, F. Gourbilleau, R. Rizk, J Appl Phys 88, 3396 (2000)

    Article  ADS  Google Scholar 

  22. P. Caregnato, M.L. Dell’arciprete, M.C. Gonzalez, Photoch Photobio Sci 12, 1658 (2013)

    Article  Google Scholar 

  23. V. Švrček, H. Fujiwara, M. Kondo, Sol Energ Mat Sol C 93, 774 (2009)

    Article  Google Scholar 

  24. X.Y. Chen, Y.F. Lu, Y.H. Wu, B.J. Cho, M.H. Liu, D.Y. Dai, W.D. Song, J Appl Phys 93, 6311 (2003)

    Article  ADS  Google Scholar 

  25. D. Riabinina, C. Durand, M. Chaker, F. Rosei, Appl Phys Lett 88, 073105 (2006)

    Article  ADS  Google Scholar 

  26. S. Yang, W. Cai, H. Zhang, X. Xu, H. Zeng, J Phys Chem C 113, 19091 (2009)

    Article  Google Scholar 

  27. V. Švrček, M. Kondo, K. Kalia, D. Mariotti, Chem Phys Lett 478, 224 (2009)

    Article  ADS  Google Scholar 

  28. D. Rioux, M. Laferrière, A. Douplik, D. Shah, L. Lilge, A.V. Kabashin, M.M. Meunier, J Biomed Opt 14, 021010 (2009)

    Article  Google Scholar 

  29. V. Švrček, T. Sasaki, Y. Shimizu, N. Koshizaki, Appl Phys Lett 89, 213113 (2006)

    Article  ADS  Google Scholar 

  30. P.A. Perminov, I.O. Dzhun, A.A. Ezhov, S.V. Zabotnov, L.A. Golovan, G.D. Ivlev, E.I. Gatskevich, V.L. Malevich, P.K. Kashkarov, Laser Phys 21, 801 (2011)

    Article  ADS  Google Scholar 

  31. P. Chewchinda, T. Tsuke, H. Funakubo, O. Odawara, H. Wada, Jpn J Appl Phys 52, 025001 (2013)

    Article  ADS  Google Scholar 

  32. H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Appl Phys Lett 56, 2379 (1990)

    Article  ADS  Google Scholar 

  33. G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, Phys Rev B 62, 15942 (2000)

    Article  ADS  Google Scholar 

  34. G. Ledoux, J. Gong, F. Huisken, O. Guillois, C. Reynaud, Appl Phys Lett 80, 4834 (2002)

    Article  ADS  Google Scholar 

  35. S. Yang, W. Cai, H. Zeng, X. Xu, J Mater Chem 19, 7119 (2009)

    Article  Google Scholar 

  36. P.G. Kuzmin, G.A. Shafeev, V.V. Bukin, S.V. Garnov, C. Farcau, R. Carles, B. Warot-Fontrose, V. Guieu, G. Viau, J Phys Chem C 114, 15266 (2010)

    Article  Google Scholar 

  37. J. Piprek, Semiconductor optoelectronic devices: introduction to physics and simulation (Elsevier Science, California, 2003), p. 146

    Google Scholar 

  38. G.Z. Cao, Nanostructures & nanomaterials: synthesis, properties & applications (Imperial College Press, London, 2004), p. 51

    Book  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Kazutaka Nakamura (Nd:YAG laser), Prof. Takeo Yamaguchi, and Mr. Teruaki Fuchigami (TEM) from Tokyo Institute of Technology for their contribution to this research. This work was supported by the Materials and Structure Laboratory (Tokyo Tech. collaborative research), JSPS KAKENHI, and NEC C&C Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chewchinda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chewchinda, P., Odawara, O. & Wada, H. The effect of energy density on yield of silicon nanoparticles prepared by pulsed laser ablation in liquid. Appl. Phys. A 117, 131–135 (2014). https://doi.org/10.1007/s00339-014-8293-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8293-7

Keywords

Navigation