Applied Physics A

, Volume 116, Issue 4, pp 1605–1612 | Cite as

Surface roughness analysis and magnetic property studies of nickel thin films electrodeposited onto rotating disc electrodes



Ni films were electrodeposited onto polycrystalline gold substrates mounted on a rotating disc electrode. The effects of rotation speed, film thickness and current density on the kinetic roughening and magnetic properties of the films were investigated. The film surface roughness was imaged using an atomic force microscope (AFM). The results indicate that the film roughness increases as the film thickness or deposition current density increases. We found that the electrodeposited Ni films exhibit anomalous scaling since both local and large-scale roughnesses show a power-law dependence on the film thickness. The effect of electrode rotation speed on the film surface roughness was also investigated. Scanning electron microscopy studies (SEM) had a good agreement with the AFM results. The average crystalline size of the film surfaces is also calculated from X-ray line broadening using (220) peak and Debye–Scherrer formula. The obtained results agree with that of AFM and SEM. The Ni thin films which are grown at different deposition current densities and rotation speeds exhibit in-plane magnetization with coercivities less than 110 Oe.


Rotation Speed Rotate Disc Electrode Average Crystalline Size Rotation Speed Increase Roughness Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Some AFM images have been taken in the AFM Lab, Department of Physics, University of Bristol, UK. Authors would like to thank Professor Walther Schwarzacher for his collaboration. Especial thanks to N. Nabiyouni for English assistance.


  1. 1.
    K. Hedayati, G. Nabiyouni, G.R. Jafari, Surf. Eng. 28, 667 (2012)CrossRefGoogle Scholar
  2. 2.
    F. Ruffino, V. Torrisi, G. Marletta, M.G. Grimaldi, Appl. Phys. A 103, 939 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    J. Mohanty, S. Vandezande, S. Brems, M.J. Van Bael, T. Charlton, S. Langridge, R.M. Dalgliesh, K. Temst, C. Van Haesendonck, Appl. Phys. A 109, 181 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    S. Cusenza, P. Schaaf, Appl. Phys. A 94, 139 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    W. Schwarzacher, M. Alper, R. Hart, G. Nabiyouni, I. Bakonyi, E. Tothkadar, Mater. Res. Soc. Symp. Proc. 451, 347 (1997)Google Scholar
  6. 6.
    F. Family, T. Vicsek, Dynamics of fractal surfaces (World Scientific, Singapore, 1991)MATHGoogle Scholar
  7. 7.
    Y. Zhang, Y. Li, H. Xia, D. Hao, Z. Xun, G. Tang, J. Stat. Mech. 2012, P10014 (2012)CrossRefMathSciNetGoogle Scholar
  8. 8.
    M. Schroeder, M. Siegert, D.E. Wolf, J.D. Shore, M. Plischke, Europhys. Lett. 24, 563 (1993)ADSGoogle Scholar
  9. 9.
    L. Liu, W. Schwarzacher, Electrochem. Commun. 29, 52 (2013)Google Scholar
  10. 10.
    J.M. Lopez, Phys. Rev. Let. 83, 4594 (1999)ADSGoogle Scholar
  11. 11.
    J.M. Lopez, M. Castro, R. Gallego, Phys. Rev. Lett. 94, 166103 (2005)ADSGoogle Scholar
  12. 12.
    G. Palasantzas, Phys. Rev. E 56, 1254 (1997)ADSGoogle Scholar
  13. 13.
    G. Nabiyouni, B. Jalali Farhani, Appl. Surf. Sci. 256, 674 (2009)ADSGoogle Scholar
  14. 14.
    J. Santamaria, M.E. Gomez, J.L. Vicent, K.M. Krishnan, I.K. Schuller, Phys. Rev. Lett. 89, 190601 (2002)ADSGoogle Scholar
  15. 15.
    I. Bakonyi, L. Peter, Prog. Mater Sci. 55, 107 (2010)Google Scholar
  16. 16.
    Y.P. Zhao, J.B. Fortin, G. Bonvallet, G.C. Wang, T.M. Lu, Phys. Rev. Lett. 85, 3229 (2000)ADSGoogle Scholar
  17. 17.
    S. Zafeiratos, F.E. Paloukis, S.G. Neophytides, J. Phys. Chem. B 108, 1371 (2004)Google Scholar
  18. 18.
    M. Ebadi, W.J. Basirun, Y. Alias, M.R. Mahmoudian, S.Y. Leng, Mater. Char. 66, 46 (2012)Google Scholar
  19. 19.
    R. Fathi, S. Sanjabi, Curr. Appl. Phys. 12, 89 (2012)ADSGoogle Scholar
  20. 20.
    W. Schwarzacher, J. Phys. Cond. Mat. 16, R859 (2004)ADSGoogle Scholar
  21. 21.
    M. Moharana, A. Mallik, Electrochim. Acta 98, 1 (2013)Google Scholar
  22. 22.
    A.J. Bard, L.R. Faulkner, Electrochemical methods (John Wiley and Sons, New York, 2001)Google Scholar
  23. 23.
    M.C. Lafouresse, P.J. Heard, W. Schwarzacher, Phys. Rev. Lett. 98, 236101 (2007)ADSGoogle Scholar
  24. 24.
    M. Jafari Fesharaki, L. Peter, T. Schucknecht, D. Rafaja, J. Degi, L. Pogany, K. Neurohr, E. Szeles, G. Nabiyouni, I. Bakonyi, J. Electrochem. Soc 159, D162 (2012)Google Scholar
  25. 25.
    T. Uemura, T.M. Chang, A. Shibata, M. Sone, Thin Sol. Films 529, 385 (2013)ADSGoogle Scholar
  26. 26.
    K.T. Chan, J.J. Kana, C. Doran, L. Ouyang, D.J. Smith, E.E. Fullerton, Phil. Mag. 92, 2173 (2012)ADSGoogle Scholar
  27. 27.
    G. Nabiyouni, P. Boroojerdian, K. Hedayati, D. Ghanbari, High Temp. Mater. Proc. 31, 723 (2012)Google Scholar
  28. 28.
    R.C. da Silva, A.A. Pasa, J.J. Mallett, W. Schwarzacher, Surf. Sci. 576, 212 (2005)ADSGoogle Scholar
  29. 29.
    X. Xu, G. Zangari, J. Appl. Phys. 99, 08M304 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsArak University of TechnologyArakIran
  2. 2.Department of Physics, Faculty of ScienceArak UniversityArakIran

Personalised recommendations