Skip to main content
Log in

Silicon suboxide (SiOx): laser processing and applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Substoichiometric silicon oxide SiOx with x < 2 in form of evaporated or sputtered thin films offers a versatile material basis for laser ablation techniques such as film patterning, laser-induced forward transfer, or laser-induced backside dry etching. Applications in the field of (micro-) optics are favoured strongly by the fact that SiOx can be oxidised to UV-transparent SiO2 by thermal treatment (furnace or laser annealing). On the other hand, with x ≈ 1, SiOx exhibits an absorption coefficient of >105 cm−1 in the deep UV below 250 nm, comparable to strongly absorbing polymers such as polyimide. This enables precise ablation with, e.g., excimer lasers at moderate fluences. For example, UV-transparent diffractive elements or phase masks are made by laser patterning of an appropriate SiOx film and subsequent oxidation to SiO2. Modifications of the basic film ablation process lead to novel surface topographies such as blister or cup arrays with potential non-optical applications, e.g., in micro-/nanofluidics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Kaiser, H.K. Pulker (eds.), Optical interference coatings (Springer-Verlag, Berlin, 2003)

    Google Scholar 

  2. L. Pavesi, R. Turan (eds.), Silicon nanocrystals: fundamentals, synthesis and applications (Wiley-VCH Verlag, Weinheim, 2010)

    Google Scholar 

  3. H.R. Philip, J. Non-Cryst Sol. 8–10, 627 (1972)

    Article  Google Scholar 

  4. R.J. Temkin, J. Non-Cryst Sol. 17, 215 (1975)

    Article  ADS  Google Scholar 

  5. A. Hohl, T. Wieder, P.A. van Aken, T.E. Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer, H. Fuess, J. Non-Cryst Sol. 320, 255 (2003)

    Article  ADS  Google Scholar 

  6. U. Kahler, H. Hofmeister, Opt. Mater. 17, 83 (2001)

    Article  ADS  Google Scholar 

  7. S.H. Hong, S. Kim, S.-H. Choi, K.J. Lee, H. Lee, K.J. Kim, D.W. Moon, J. Kor. Phys. Soc. 45, 116 (2004)

    Google Scholar 

  8. F. Iacona, G. Franzo, C. Spinella, J. Appl. Phys. 87, 1295 (2000)

    Article  ADS  Google Scholar 

  9. J.M. Lackner, W. Waldhauser, R. Ebner, W. Lenz, C. Suess, G. Jacopic, G. Leising, H. Hutter, Surf. Coat. Technol. 163–164, 300 (2003)

    Article  Google Scholar 

  10. D. Bäuerle, Laser processing and chemistry, 2nd edn. (Springer Verlag, Berlin, 1996), p. 576

    Book  Google Scholar 

  11. M. Schulz-Ruhtenberg, J. Ihlemann, J. Heber, Appl. Surf. Sci. 248, 190 (2005)

    Article  ADS  Google Scholar 

  12. T. Nikitin, R. Velagapudi, J. Sainio, J. Lahtinen, M. Räsänen, S. Novikov, L. Khriachtchev, J. Appl. Phys. 112, 094316 (2012)

    Article  ADS  Google Scholar 

  13. M.L. Brongersma, A. Polman, K.S. Min, E. Boer, T. Tambo, H.A. Atwater, Appl. Phys. Lett. 72, 2577 (1998)

    Article  ADS  Google Scholar 

  14. S.E. Blum, K.H. Brown, R. Srinivasan, Appl. Phys. Lett. 43, 1026 (1983)

    Article  ADS  Google Scholar 

  15. J. Richter, J. Meinertz, J. Ihlemann, Appl. Phys. A 104, 759 (2011)

    Article  ADS  Google Scholar 

  16. J. Ihlemann, J. Meinertz, G. Danev, Appl. Phys. Lett. 101, 091901 (2012)

    Article  ADS  Google Scholar 

  17. J. Ihlemann, Appl. Phys. A 93, 65 (2008)

    Article  ADS  Google Scholar 

  18. R. Böhme, K. Zimmer, B. Rauschenbach, Appl. Phys. A 82, 325 (2006)

    Article  ADS  Google Scholar 

  19. B. Hopp, C. Vass, T. Smausz, Z. Bor, J. Appl. Phys. D 39, 4843 (2006)

    Article  ADS  Google Scholar 

  20. A. Pique, Laser transfer techniques for digital microfabrication, in Laser precision microfabrication, springer series in materials science, vol. 135, ed. by K. Sugioka, M. Meunier, A. Piqué (Springer-Verlag, Berlin, 2010), pp. 239–257

    Chapter  Google Scholar 

  21. J. Ihlemann, R. Weichenhain-Schriever, Appl. Phys. A 101, 483 (2010)

    Article  ADS  Google Scholar 

  22. N.T. Kattamis, M.S. Brown, C.B. Arnold, J. Mater. Res. 26, 2438 (2011)

    Article  ADS  Google Scholar 

  23. G.J. Cheng, D. Pirzada, Z. Ming, J. Appl. Phys. 101, 063108 (2007)

    Article  ADS  Google Scholar 

  24. C. Yu, H. Gao, H. Yu, H. Jiang, G.H. Cheng, Appl. Phys. Lett. 95, 091108 (2009)

    Article  ADS  Google Scholar 

  25. Heraeus datasheet “Quarzglas für die Optik“, http://heraeus-quarzglas.de/media/webmedia_local/downloads/broschren_mo/DatenundEigenschaften_QuarzglasfuerdieOptik.pdf

  26. Material Property Database, http://www.mit.edu/~6.777/matprops/pdms.htm

  27. D.G. Howells, B.M. Henry, Y. Leterrier, J.-A.E. Månson, J. Madocks, H.E. Assender, Surf. Coat. Technol. 202, 3529 (2008)

    Article  Google Scholar 

  28. U. Wallrabe, J. Draheim, Phys. Unserer Zeit 42(2), 1 (2011)

    Google Scholar 

  29. M. Jahn, J. Richter, R. Weichenhain-Schriever, J. Meinertz, J. Ihlemann, Appl. Phys. A 101, 533 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ihlemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fricke-Begemann, T., Meinertz, J., Weichenhain-Schriever, R. et al. Silicon suboxide (SiOx): laser processing and applications. Appl. Phys. A 117, 13–18 (2014). https://doi.org/10.1007/s00339-014-8236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8236-3

Keywords

Navigation